我不确定标题是否措辞得当,但情况如下:
我有一个元数据数据集,其中可以包含任意数量的行,例如:
Control_DF <- cbind.data.frame(
Scenario = c("A","B","C")
,Variable = c("V1","V2","V3")
,Weight = c("w1","w2","w3")
)
使用Control_DF中包含的数据,我想在主数据集上创建每个变量的新版本,其中我将变量乘以权重。因此,如果我的主数据集如下所示:
Main_Data <- cbind.data.frame(
V1 = c(1,2,3,4)
,V2 = c(2,3,4,5)
,V2 = c(3,4,5,6)
,w1 = c(0.1,0.5,1,0.8)
,w2 = c(0.2,1,0.3,0.6)
,w2 = c(0.3,0.7,0.1,0.2)
)
然后,在开放代码中,我想要做的事情是这样的:
New_Data <- Main_Data %>%
mutate(
weighted_V1 = V1 * w1
,weighted_V2 = V2 * w2
,weighted_V3 = V3 * w3
)
但是,我需要一种不硬编码的方法,并且引用的变量数量是任意的。
任何人都可以帮助我吗?
答案 0 :(得分:1)
在R
lapply
Map
基础cbind
,# with Control_DF create a list with pairs of <varName,wgt>
controlVarList = lapply(Control_DF$Scenario,function(x)
as.vector(as.matrix(Control_DF[Control_DF$Scenario==x,c("Variable","Weight")] ))
)
controlVarList
#[[1]]
#[1] "V1" "w1"
#
#[[2]]
#[1] "V2" "w2"
#
#[[3]]
#[1] "V3" "w3"
# A custom function for multiplication of both columns
fn_weightedVars = function(x) {
# x = c("V1","w1"); hence x[1] = "V1",x[2] = "w2"
# reference these columns in Main_Data and do scaling
wgtedCol = matrix(Main_Data[,x[1]] * Main_Data[,x[2]],ncol=1)
#rename as required
colnames(wgtedCol)= paste0("weighted_",x[1])
#return var
wgtedCol
}
#call function on each each list element
scaledList = Map(fn_weightedVars ,controlVarList)
和scaledDF = do.call(cbind,scaledList)
#combine datasets
New_Data = data.frame(Main_Data,scaledDF)
New_Data
# V1 V2 V3 w1 w2 w3 weighted_V1 weighted_V2 weighted_V3
#1 1 2 3 0.1 0.2 0.3 0.1 0.4 0.9
#2 2 3 4 0.5 1.0 0.7 1.0 3.0 2.8
#3 3 4 5 1.0 0.3 0.1 3.0 1.2 0.5
#4 4 5 6 0.8 0.6 0.2 3.2 3.0 1.2
中,您可以执行以下操作:
Get-ADUser -Filter {Enabled -eq $true} -Properties LastLogonDate, createTimeStamp, mail |
Select Name, SamAccountName, LastLogonDate, createTimeStamp, mail,
@{n='MailboxSize';e={
Get-Mailbox $_.mail |
Get-MailboxStatistics |
Select-Object -Expand TotalItemSize
}}
<强>输出:强>
% Operation 1
Year = 2008;
PartOfYear = 1;
PlantType = 1;
string200811 = 'blabla'; % some random result
number200811 = rand(1); % some other random result
vector200811 = [rand(1); rand(1); rand(1); rand(1)]; % some other random result
% Operation 2
Year = 2008;
PartOfYear = 1;
PlantType = 2;
string200812 = 'blablablubb';
number200812 = rand(1);
vector200812 = [rand(1); rand(1); rand(1); rand(1)];
% Operation 3
Year = 2008;
PartOfYear = 2;
PlantType = 1;
string200821 = 'blablabla';
number200821 = rand(1);
vector200821 = [rand(1); rand(1); rand(1); rand(1)];
% Operation 4
Year = 2008;
PartOfYear = 2;
PlantType = 2;
string200822 = 'blablablablubb';
number200822 = rand(1);
vector200822 = [rand(1); rand(1); rand(1); rand(1)];
% Concatenate results
Results = {2008, 1, 1, string200811, number200811;...
2008, 1, 2, string200812, number200812;...
2008, 2, 1, string200821, number200821;...
2008, 2, 2, string200822, number200822}
Table = cell2table(Results);
writetable(Table,'ResultsTest.xls','Sheet',1);
vectors = vertcat(vector200811, vector200812, vector200821, vector200822)