我目前有以下数据结构:
class DataStructure {
public:
DataStructure(int n) : m_data(n, 0) {
}
void update(int i, int j, int value) {
for (int k = i; k <= j; ++k) {
m_data[k] = max(m_data[k], value);
}
}
void reset(int i) {
m_data[i] = 0;
}
int query(int i) {
return m_data[i];
}
private:
vector<int> m_data;
};
所以它的作用相当简单:
我需要执行n次更新,n次重置和n次查询操作。目前,由于更新操作通常为O(n),因此该代码需要O(n * n)时间。
我想知道是否有一些聪明的方法可以在n次更新,n次重置和n次查询操作时将其提高到O(n * log n)时间(或更好),同时保持O(n)空间复杂度?
答案 0 :(得分:1)
感谢@qwertman这里的解释是一个应该工作的算法
#include <iostream>
#include <cstdio>
using namespace std;
#define max(a, b) (a>b?a:b)
int tree[100005], lazy[100005];
void init(int idx, int l, int r){
if(l>r)
return ;
if(l==r){
tree[idx] = 0;
lazy[idx] = -1;
}
else {
tree[idx] = 0;
lazy[idx] = -1;
int mid = (l+r)/2;
init(2*idx, l, mid);
init(2*idx+1, mid+1, r);
}
}
// l and r is for internal use the range a-b has to be updated
void update(int idx, int l, int r, int a, int b, int val, bool isReset){
if(l>r || b<l || a>r){
return;
}
// printf("idx=%d l=%d r=%d a=%d b=%d val=%d\n",idx,l,r,a,b,val);
if(lazy[idx] != -1){
tree[idx] = max(tree[idx], lazy[idx]);
lazy[2*idx] = max(lazy[2*idx], lazy[idx]);
lazy[2*idx+1] = max(lazy[2*idx+1], lazy[idx]);
lazy[idx] = -1;
}
if(l>=a && r<=b){
// printf("updating\n");
tree[idx] = max(tree[idx], val);
if(isReset){
tree[idx] = val;
}
lazy[2*idx] = max(lazy[2*idx], val);
lazy[2*idx+1] = max(lazy[2*idx+1], val);
lazy[idx] = -1;
}
else {
int mid = (l+r)/2;
update(2*idx, l, mid, a, b, val, isReset);
update(2*idx+1, mid+1, r, a, b, val, isReset);
tree[idx] = max(tree[2*idx], tree[2*idx+1]);
}
}
int query(int idx, int l, int r, int a){
if(l>r || a<l || a>r){
return -1;
}
// printf("idx=%d l=%d r=%d a=%d\n",idx,l,r,a);
if(lazy[idx] != -1){
tree[idx] = max(tree[idx], lazy[idx]);
lazy[2*idx] = max(lazy[2*idx], lazy[idx]);
lazy[2*idx+1] = max(lazy[2*idx+1], lazy[idx]);
lazy[idx] = -1;
}
if(l==a && r==a){
// printf("----l=%d r=%d a=%d tree=%d\n",l,r,a,tree[idx]);
return tree[idx];
}
else {
int mid = (l+r)/2;
int left = query(2*idx, l, mid, a);
int right = query(2*idx+1, mid+1, r, a);
return max(left, right);
}
}
int main() {
// initializing everything to 0
init(1, 1, 10);
// updating range 1-4 with value 7
update(1, 1, 10, 1, 4, 7, false);
// query for 3 should result in 7
cout << query(1, 1, 10, 3) << endl;
// updating 3-3 with value 9
update(1, 1, 10, 3, 3, 9, false);
// should give 9
cout << query(1, 1, 10, 3) << endl;
// isReset is set to true, so the function will do a hard reset
update(1, 1, 10, 3, 3, 0, true);
// should give 0
cout << query(1, 1, 10, 3) << endl;
return 0;
}
您可以在http://ideone.com/Mkp4dQ运行此代码
学习具有延迟传播的分段树的一些有用链接
hackerearth
Geeksforgeeks