PyCall文件说: 重要:与Python最大的区别在于,使用o [:attribute]而不是o.attribute访问对象属性/成员,因此Python中的o.method(...)将被Julia中的o:方法替换。此外,您使用get(o,key)而不是o [key]。 (但是,您可以通过o [i]访问整数索引,就像在Python中一样,虽然使用基于1的Julian索引而不是基于0的Python索引。)
但我不知道要导入哪个模块或对象
答案 0 :(得分:3)
这是一个让你入门的简单例子
using PyCall
@pyimport numpy as np # 'np' becomes a julia module
a = np.array([[1, 2], [3, 4]]) # access objects directly under a module
# (in this case the 'array' function)
# using a dot operator directly on the module
#> 2×2 Array{Int64,2}:
#> 1 2
#> 3 4
a = PyObject(a) # dear Julia, we appreciate the automatic
# convertion back to a julia native type,
# but let's get 'a' back in PyObject form
# here so we can use one of its methods:
#> PyObject array([[1, 2],
#> [3, 4]])
b = a[:mean](axis=1) # 'a' here is a python Object (not a python
# module), so the way to access a method
# or object that belongs to it is via the
# pythonobject[:method] syntax.
# Here we're calling the 'mean' function,
# with the appropriate keyword argument
#> 2-element Array{Float64,1}:
#> 1.5
#> 3.5
pybuiltin(:type)(b) # Use 'pybuiltin' to use built-in python
# commands (i.e. commands that are not
# under a module)
#> PyObject <type 'numpy.ndarray'>
pybuiltin(:isinstance)(b, np.ndarray)
#> true