我有一个data
张量尺寸[B X N X 3]
,我有一个indices
张量尺寸[B X M]
。我希望使用[B X M X 3]
张量从data
张量中提取indices
张量。
我的代码有效:
new_data= []
for i in range(B):
new_data.append(tf.gather(data[i], indices[i]))
new_data= tf.stack(new_data)
但是,我确信这不是正确的方法。有谁知道更好的方法? (我想我应该以某种方式使用tf.gather_nd()
,但我无法弄清楚如何)
我已经看到了类似问题的几个答案here。但是我无法找到问题的解决方案。
答案 0 :(得分:0)
您可以将tf.gather_nd()
与以下代码一起使用:
import tensorflow as tf
# B = 3
# N = 4
# M = 2
# [B x N x 3]
data = tf.constant([
[[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10, 11]],
[[100, 101, 102], [103, 104, 105], [106, 107, 108], [109, 110, 111]],
[[200, 201, 202], [203, 204, 205], [206, 207, 208], [209, 210, 211]],
])
# [B x M]
indices = tf.constant([
[0, 2],
[1, 3],
[3, 2],
])
indices_shape = tf.shape(indices)
indices_help = tf.tile(tf.reshape(tf.range(indices_shape[0]), [indices_shape[0], 1]) ,[1, indices_shape[1]]);
indices_ext = tf.concat([tf.expand_dims(indices_help, 2), tf.expand_dims(indices, 2)], axis = 2)
new_data = tf.gather_nd(data, indices_ext)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
print('data')
print(sess.run(data))
print('\nindices')
print(sess.run(indices))
print('\nnew_data')
print(sess.run(new_data))
new_data
将是:
[[[ 0 1 2]
[ 6 7 8]]
[[103 104 105]
[109 110 111]]
[[209 210 211]
[206 207 208]]]