我正在尝试在astropy.modelling中使用Model.tied
(或Parameter.tied
)属性,但似乎无法弄清楚它是如何工作的。例如,假设我想创建一个包含两个参数的复合模型:flux_0
和flux_1
。但是,我只希望flux_0
用于拟合:flux_1
应始终带有值1 - flux_0
。 (最后,我需要扩展此功能,以便flux_0 + flux_1 + ... + flux_n = 1
。)
我为tied
属性定义了一个模型类和一个“callable”,如下所示:
>>> from astropy.modeling import Fittable1DModel, Parameter
>>>
>>> class MyModel(Fittable1DModel):
... flux = Parameter()
... @staticmethod
... def evaluate(x, flux):
... return flux
...
>>> def tie_fluxes(model):
... flux_1 = 1 - model.flux_0
... return flux_1
...
>>> TwoModel = MyModel + MyModel
>>>
>>> TwoModel
<class '__main__.CompoundModel0'>
Name: CompoundModel0
Inputs: ('x',)
Outputs: ('y',)
Fittable parameters: ('flux_0', 'flux_1')
Expression: [0] + [1]
Components:
[0]: <class '__main__.MyModel'>
Name: MyModel
Inputs: ('x',)
Outputs: ('y',)
Fittable parameters: ('flux',)
[1]: <class '__main__.MyModel'>
Name: MyModel
Inputs: ('x',)
Outputs: ('y',)
Fittable parameters: ('flux',)
然后我检查tied
属性。我的理解是这应该是一本字典(见脚注),但它不是:
>>> TwoModel.tied
<property object at 0x109523958>
>>>
>>> TwoModel.tied['flux_1'] = tie_fluxes
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: 'property' object does not support item assignment
如果我尝试将其设置为字典,则不会更新相应的Parameter
:
>>> TwoModel.tied = {'flux_1': tie_fluxes}
>>>
>>> TwoModel.flux_1.tied
False
但是当我尝试直接创建一个对象而不是复合模型类时(这不是我最后想要做的),对象的tied
属性是一个字典。不幸的是,设置这个字典仍然不会产生预期的效果:
>>> TwoSetModel = MyModel(0.2) + MyModel(0.3)
>>>
>>> TwoSetModel
<CompoundModel1(flux_0=0.2, flux_1=0.3)>
>>>
>>> TwoSetModel.tied
{'flux_1': False, 'flux_0': False}
>>>
>>> TwoSetModel.tied['flux_1'] = tie_fluxes
>>>
>>> TwoSetModel
<CompoundModel1(flux_0=0.2, flux_1=0.3)>
>>>
>>> TwoSetModel.flux_1.tied
<function tie_fluxes at 0x102987730>
因此,在此示例中,tied
属性确实保留了正确的函数,但参数value
未相应更新。
我在这里做错了什么?我完全误解了tied
属性吗?
(我在上面的例子中使用Python 3.5.2和Astropy 1.3.3)
脚注:
运行help(TwoModel)
,我收到以下信息:
⁝
| tied : dict, optional
| Dictionary ``{parameter_name: callable}`` of parameters which are
| linked to some other parameter. The dictionary values are callables
| providing the linking relationship.
|
| Alternatively the `~astropy.modeling.Parameter.tied` property of a
| parameter may be used to set the ``tied`` constraint on individual
| parameters.
⁝
| Examples
| --------
| >>> from astropy.modeling import models
| >>> def tie_center(model):
| ... mean = 50 * model.stddev
| ... return mean
| >>> tied_parameters = {'mean': tie_center}
|
| Specify that ``'mean'`` is a tied parameter in one of two ways:
|
| >>> g1 = models.Gaussian1D(amplitude=10, mean=5, stddev=.3,
| ... tied=tied_parameters)
|
| or
|
| >>> g1 = models.Gaussian1D(amplitude=10, mean=5, stddev=.3)
| >>> g1.mean.tied
| False
| >>> g1.mean.tied = tie_center
| >>> g1.mean.tied
| <function tie_center at 0x...>
⁝
答案 0 :(得分:0)
以下示例与astropy文档中给出的示例类似。
复合模型=两个1D高斯函数的和。
约束:mean_1 = 2 * mean_0
import numpy as np
import matplotlib.pyplot as plt
from astropy.modeling import models, fitting
def tie_center(model):
mean = 2* model.mean_0
return mean
tied_parameters = {'mean_1': tie_center}
np.random.seed(42)
g1 = models.Gaussian1D(2, 0.4, 0.3)
g2 = models.Gaussian1D(2.5, 0.2, 0.2)
TwoGaussians = (models.Gaussian1D +
models.Gaussian1D).rename('TwoGaussians')
x = np.linspace(-1, 1, 200)
y = g1(x) + g2(x) + np.random.normal(0., 0.2, x.shape)
gg_init = TwoGaussians(amplitude_0=1.4, mean_0=1.2, stddev_0=0.1,\
amplitude_1=1.0,stddev_1=0.2, tied=tied_parameters)
fitter = fitting.SLSQPLSQFitter()
gg_fit = fitter(gg_init, x, y)
plt.figure(figsize=(8,5))
plt.plot(x, y, 'ko')
plt.plot(x, gg_fit(x))
plt.xlabel('Position')
plt.ylabel('Flux')
plt.show()
print(gg_fit.mean_0,gg_fit.mean_1)
当Compund_model =三个1D高斯函数之和时,在星座中绑定参数 约束:所有三种方法的总和应始终等于一。
def tie_center(model):
mean = 1-(model.mean_0+ model.mean_1)
return mean
tied_parameters = {'mean_2': tie_center}
np.random.seed(42)
g1 = models.Gaussian1D(2, 0.4, 0.3)
g2 = models.Gaussian1D(2.5, 0.2, 0.2)
g3 = models.Gaussian1D(1.5, 0.4, 0.1)
ThreeGaussians = (models.Gaussian1D + models.Gaussian1D +
models.Gaussian1D).rename('ThreeGaussians')
x = np.linspace(-1, 1, 200)
y = g1(x) + g2(x) + g3(x) + np.random.normal(0., 0.2, x.shape)
gg_init = ThreeGaussians(amplitude_0=1.4, mean_0=0.3, stddev_0=0.1,
amplitude_1=1.0, mean_1=0.3,stddev_1=0.2, \
amplitude_2=1.5,stddev_2=0.1,tied=tied_parameters)
fitter = fitting.SLSQPLSQFitter()
gg_fit = fitter(gg_init, x, y)
plt.figure(figsize=(8,5))
plt.plot(x, y, 'ko')
plt.plot(x, gg_fit(x))
plt.xlabel('Position')
plt.ylabel('Flux')
plt.show()
print(gg_fit.mean_0,gg_fit.mean_1, gg_fit.mean_2)