我尝试使用此代码创建自己的Deep Dream算法:
import tensorflow as tf
import matplotlib.pyplot as plt
import numpy as np
import inception
img = np.random.rand(1,500,500,3)
net = inception.get_inception_model()
tf.import_graph_def(net['graph_def'], name='inception')
graph = tf.get_default_graph()
sess = tf.Session()
layer = graph.get_tensor_by_name('inception/mixed5b_pool_reduce_pre_relu:0')
gradient = tf.gradients(tf.reduce_mean(layer), graph.get_tensor_by_name('inception/input:0'))
softmax = sess.graph.get_tensor_by_name('inception/softmax2:0')
iters = 100
init = tf.global_variables_initializer()
sess.run(init)
for i in range(iters):
prediction = sess.run(softmax, \
{'inception/input:0': img})
grad = sess.run(gradient[0], \
{'inception/input:0': img})
grad = (grad-np.mean(grad))/np.std(grad)
img = grad
plt.imshow(img[0])
plt.savefig('output/'+str(i+1)+'.png')
plt.close('all')
但即使在运行此循环100次迭代后,生成的图片仍然看起来是随机的(我会将所述图片附加到此问题)。 有人可以帮助我优化我的代码吗?
答案 0 :(得分:2)
使用Deep Dream的Inception网络有点繁琐。在您从中借用了辅助库的CADL课程中,教师选择使用VGG16作为指令网络。如果你使用它并对你的代码进行一些小的修改,你应该得到一些有效的东西(如果你在这里交换Inception网络它会那种工作,但结果看起来会更令人失望) :
import tensorflow as tf
import matplotlib.pyplot as plt
import numpy as np
import vgg16 as vgg
# Note reduced range of image, your noise function was drowning
# out the few textures that you were getting
img = np.random.rand(1,500,500,3) * 0.1 + 0.45
net = vgg.get_vgg_model()
tf.import_graph_def(net['graph_def'], name='vgg')
graph = tf.get_default_graph()
sess = tf.Session()
layer = graph.get_tensor_by_name('vgg/pool4:0')
gradient = tf.gradients(tf.reduce_mean(layer),
graph.get_tensor_by_name('vgg/images:0'))
# You don't need to define or use the softmax layer - TensorFlow
# is smart enough to resolve the computation graph for gradients
# without explicitly running the whole network forward first
iters = 100
# You don't need to init the network variables, everything you need
# is set by the import, plus the placeholder.
for i in range(iters):
grad = sess.run(gradient[0], {'vgg/images:0': img})
# You can use all sorts of normalisation, this one is from CADL
grad /= (np.max(np.abs(grad))+1e-7)
# You forgot to use += here, and it is best to use a
# step size even after gradient normalisation
img += 0.25 * grad
# Re-normalise the image, to prevent over-saturation
img = 0.98 * (img - 0.5) + 0.5
img = np.clip(img, 0.0, 1.0)
plt.imshow(img[0])
plt.savefig('output/'+str(i+1)+'.png')
plt.close('all')
print(i)
完成所有这些操作可以获得明显有效的图像,但仍需要进行一些改进:
为了获得更好的效果,您可能在网上看到的全彩色图像需要进行更多更改。例如,您可以在每次迭代之间稍微重新标准化或模糊图像。
如果你想变得更复杂,你可以尝试the TensorFlow Jupyter notebook walk-through,虽然由于结合了多个想法,从第一原则来理解起来有些困难。