如何在pandas中垂直连接多个列

时间:2017-08-03 19:47:37

标签: python pandas

我正在尝试向数据框添加新列,并将数据框中的多个其他列填充到该列中。我怎么能这样做,因为这个新列的长度与数据帧中其他列的长度不同?

例如:

df = pd.DataFrame([[1, 2], [1, 3], [4, 6]], columns=['A', 'B'])

我想在数据框中创建一个读取1,1,4,2,3,6(垂直除外)的列

print (df)
   A  B  C
0  1  2  1 
1  1  3  1
2  4  6  4
3        2
4        3
5        6

2 个答案:

答案 0 :(得分:4)

稍微修改过Anton的解决方案(适用于任意数量的列):

In [99]: df = pd.DataFrame(np.random.randint(0,10,(3,4)), columns=list('ABCD'))

In [100]: df
Out[100]:
   A  B  C  D
0  9  6  9  6
1  1  2  0  8
2  5  0  4  8

In [105]: pd.concat([df, df.T.stack().reset_index(name='new')['new']], axis=1)
Out[105]:
      A    B    C    D  new
0   9.0  6.0  9.0  6.0    9
1   1.0  2.0  0.0  8.0    1
2   5.0  0.0  4.0  8.0    5
3   NaN  NaN  NaN  NaN    6
4   NaN  NaN  NaN  NaN    2
5   NaN  NaN  NaN  NaN    0
6   NaN  NaN  NaN  NaN    9
7   NaN  NaN  NaN  NaN    0
8   NaN  NaN  NaN  NaN    4
9   NaN  NaN  NaN  NaN    6
10  NaN  NaN  NaN  NaN    8
11  NaN  NaN  NaN  NaN    8

答案 1 :(得分:2)

这个怎么样:

df1 = pd.DataFrame.from_dict({'A':[1,1,4],'B':[2,3,6]})

concatvalues = np.concatenate([df1.A.values,df1.B.values])

df2 = pd.concat([df1,pd.DataFrame(concatvalues)], ignore_index=True, axis=1)
df2.columns = np.append(df1.columns.values, "concat")

print(df2)

打印

    A   B   concat
0   1.0 2.0 1
1   1.0 3.0 1
2   4.0 6.0 4
3   NaN NaN 2
4   NaN NaN 3
5   NaN NaN 6