现在,我有一些基本上像这样的代码:
data Expression
= Literal Bool
| Variable String
| Not Expression
| Or Expression Expression
| And Expression Expression
deriving Eq
simplify :: Expression -> Expression
simplify (Literal b) = Literal b
simplify (Variable s) = Variable s
simplify (Not e) = case simplify e of
(Literal b) -> Literal (not b)
e' -> Not e'
simplify (And a b) = case (simplify a, simplify b) of
(Literal False, _) -> Literal False
(_, Literal False) -> Literal False
(a', b') -> And a' b'
simplify (Or a b) = case (simplify a, simplify b) of
(Literal True, _) -> Literal True
(_, Literal True) -> Literal True
(a', b') -> Or a' b'
还有更多关于可以简化布尔表达式的所有方式的模式。然而,随着我添加更多运营商和规则,这种情况越来越大,感觉很笨拙。特别是因为一些规则需要加两次来解释交换性。
我怎样才能很好地重构许多模式,其中一些(我说的大多数)甚至是对称的(例如,采用And和Or模式)?
现在,添加规则以简化And (Variable "x") (Not (Variable "x"))
到Literal False
要求我添加两个嵌套规则,这些规则几乎都是最优的。
答案 0 :(得分:12)
基本上问题是你必须一遍又一遍地在每个子句中写出simplify
个子表达式。在考虑涉及顶级运营商的法律之前,首先完成所有子表达式会更好。一种简单的方法是添加一个simplify
的辅助版本,它不会被递归:
simplify :: Expression -> Expression
simplify (Literal b) = Literal b
simplify (Variable s) = Variable s
simplify (Not e) = simplify' . Not $ simplify e
simplify (And a b) = simplify' $ And (simplify a) (simplify b)
simplify (Or a b) = simplify' $ Or (simplify a) (simplify b)
simplify' :: Expression -> Expression
simplify' (Not (Literal b)) = Literal $ not b
simplify' (And (Literal False) _) = Literal False
...
由于您在布尔值中只进行了少量操作,这可能是最明智的做法。但是,如果有更多操作,simplify
中的重复可能仍值得避免。为此,您可以将一元和二元操作混合到一个公共构造函数:
data Expression
= Literal Bool
| Variable String
| BoolPrefix BoolPrefix Expression
| BoolInfix BoolInfix Expression Expression
deriving Eq
data BoolPrefix = Negation
data BoolInfix = AndOp | OrOp
然后你就
了simplify (Literal b) = Literal b
simplify (Variable s) = Variable s
simplify (BoolPrefix bpf e) = simplify' . BoolPrefix bpf $ simplify e
simplify (BoolInfix bifx a b) = simplify' $ BoolInfix bifx (simplify a) (simplify b)
显然这会让simplify'
更加尴尬,所以也许不是一个好主意。但是,您可以通过定义专门的pattern synonyms:
{-# LANGUAGE PatternSynonyms #-}
pattern Not :: Expression -> Expression
pattern Not x = BoolPrefix Negation x
infixr 3 :∧
pattern (:∧) :: Expression -> Expression -> Expression
pattern a:∧b = BoolInfix AndOp a b
infixr 2 :∨
pattern (:∨) :: Expression -> Expression -> Expression
pattern a:∨b = BoolInfix OrOp a b
就此而言,也许
pattern F, T :: Expression
pattern F = Literal False
pattern T = Literal True
然后,你可以写
simplify' :: Expression -> Expression
simplify' (Not (Literal b)) = Literal $ not b
simplify' (F :∧ _) = F
simplify' (_ :∧ F) = F
simplify' (T :∨ _) = T
simplify' (a :∧ Not b) | a==b = T
...
我应该添加一个警告:when I tried something similar to those pattern synonyms, not for booleans but affine mappings, it made the compiler extremely slow。 (另外,GHC-7.10还没有支持多态模式同义词;截至目前,这已经发生了很大变化。)
另请注意,所有这些通常不会产生最简单的形式 -
为此,您需要找到simplify
的固定点。
答案 1 :(得分:11)
你可以做的一件事是在你构造时简化,而不是先构建然后重复破坏。所以:
module Simple (Expression, true, false, var, not, or, and) where
import Prelude hiding (not, or, and)
data Expression
= Literal Bool
| Variable String
| Not Expression
| Or Expression Expression
| And Expression Expression
deriving (Eq, Ord, Read, Show)
true = Literal True
false = Literal False
var = Variable
not (Literal True) = false
not (Literal False) = true
not x = Not x
or (Literal True) _ = true
or _ (Literal True) = true
or x y = Or x y
and (Literal False) _ = false
and _ (Literal False) = false
and x y = And x y
我们可以在ghci中尝试:
> and (var "x") (and (var "y") false)
Literal False
请注意,不会导出构造函数:这可以确保构建其中一个的人无法避免简化过程。实际上,这可能是一个缺点;有时很高兴看到"完整"形成。处理此问题的标准方法是使导出的智能构造函数成为类类的一部分;你可以用它们来构建一个完整的"形式或简化的"办法。为了避免必须两次定义类型,我们可以使用newtype或phantom参数;我在这里选择后者来减少模式匹配中的噪音。
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE KindSignatures #-}
module Simple (Format(..), true, false, var, not, or, and) where
import Prelude hiding (not, or, and)
data Format = Explicit | Simplified
data Expression (a :: Format)
= Literal Bool
| Variable String
| Not (Expression a)
| Or (Expression a) (Expression a)
| And (Expression a) (Expression a)
deriving (Eq, Ord, Read, Show)
class Expr e where
true, false :: e
var :: String -> e
not :: e -> e
or, and :: e -> e -> e
instance Expr (Expression Explicit) where
true = Literal True
false = Literal False
var = Variable
not = Not
or = Or
and = And
instance Expr (Expression Simplified) where
true = Literal True
false = Literal False
var = Variable
not (Literal True) = false
not (Literal False) = true
not x = Not x
or (Literal True) _ = true
or _ (Literal True) = true
or x y = Or x y
and (Literal False) _ = false
and _ (Literal False) = false
and x y = And x y
现在我们可以"运行"相同的术语有两种不同的方式:
> :set -XDataKinds
> and (var "x") (and (var "y") false) :: Expression Explicit
And (Variable "x") (And (Variable "y") (Literal False))
> and (var "x") (and (var "y") false) :: Expression Simplified
Literal False
您可能希望稍后添加更多规则;例如,也许你想要:
and (Variable x) (Not (Variable y)) | x == y = false
and (Not (Variable x)) (Variable y) | x == y = false
必须重复"命令"模式有点烦人。我们应该抽象一下!数据声明和类将是相同的,但我们将添加辅助函数eitherOrder
并在and
和or
的定义中使用它。这是使用这个想法(以及我们模块的最终版本)的更完整的简化集:
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE KindSignatures #-}
module Simple (Format(..), true, false, var, not, or, and) where
import Data.Maybe
import Data.Monoid
import Prelude hiding (not, or, and)
import Control.Applicative ((<|>))
data Format = Explicit | Simplified
data Expression (a :: Format)
= Literal Bool
| Variable String
| Not (Expression a)
| Or (Expression a) (Expression a)
| And (Expression a) (Expression a)
deriving (Eq, Ord, Read, Show)
class Expr e where
true, false :: e
var :: String -> e
not :: e -> e
or, and :: e -> e -> e
instance Expr (Expression Explicit) where
true = Literal True
false = Literal False
var = Variable
not = Not
or = Or
and = And
eitherOrder :: (e -> e -> e)
-> (e -> e -> Maybe e)
-> e -> e -> e
eitherOrder fExplicit fSimplified x y = fromMaybe
(fExplicit x y)
(fSimplified x y <|> fSimplified y x)
instance Expr (Expression Simplified) where
true = Literal True
false = Literal False
var = Variable
not (Literal True) = false
not (Literal False) = true
not (Not x) = x
not x = Not x
or = eitherOrder Or go where
go (Literal True) _ = Just true
go (Literal False) x = Just x
go (Variable x) (Variable y) | x == y = Just (var x)
go (Variable x) (Not (Variable y)) | x == y = Just true
go _ _ = Nothing
and = eitherOrder And go where
go (Literal True) x = Just x
go (Literal False) _ = Just false
go (Variable x) (Variable y) | x == y = Just (var x)
go (Variable x) (Not (Variable y)) | x == y = Just false
go _ _ = Nothing
现在在ghci中我们可以进行更复杂的简化,例如:
> and (not (not (var "x"))) (var "x") :: Expression Simplified
Variable "x"
即使我们只写了一个重写规则的订单,但两个订单都能正常工作:
> and (not (var "x")) (var "x") :: Expression Simplified
Literal False
> and (var "x") (not (var "x")) :: Expression Simplified
Literal False
答案 2 :(得分:6)
我认为爱因斯坦说:“尽可能地简化,但不能再简化。”你有一个复杂的数据类型和相应复杂的概念,所以我认为任何技术只能对手头的问题更加清晰。
也就是说,第一种选择是使用案例结构。
simplify x = case x of
Literal _ -> x
Variable _ -> x
Not e -> simplifyNot $ simplify e
...
where
sharedFunc1 = ...
sharedFunc2 = ...
这具有包括共享功能的额外好处,所有共享功能可用于所有情况但不能用于顶级命名空间。我也喜欢这些案例如何从括号中解脱出来。 (另请注意,在前两种情况下,我只返回原始术语,而不是创建新术语)。我经常使用这种结构来突破其他简化函数,就像Not
一样。
特别是这个问题可能会使Expression
基于底层仿函数,因此您可以fmap
简化子表达式,然后执行给定案例的特定组合。它看起来如下所示:
simplify :: Expression' -> Expression'
simplify = Exp . reduce . fmap simplify . unExp
这里的步骤是将Expression'
展开到底层仿函数表示中,映射底层术语的简化,然后减少简化并重新包装到新的Expression'
{-# Language DeriveFunctor #-}
newtype Expression' = Exp { unExp :: ExpressionF Expression' }
data ExpressionF e
= Literal Bool
| Variable String
| Not e
| Or e e
| And e e
deriving (Eq,Functor)
现在,我已经将复杂性推到reduce
函数中,这只是稍微复杂一点,因为它不必担心首先减少子项。但它现在只包含将一个术语与另一个术语合并的业务逻辑。
这对您来说可能是一种很好的技术,但它可能会使一些增强功能更容易。例如,如果可以在您的语言中形成无效表达式,则可以使用Maybe
值失败来简化该表达式。
simplifyMb :: Expression' -> Maybe Expression'
simplifyMb = fmap Exp . reduceMb <=< traverse simplifyMb . unExp
此处traverse
会将simplfyMb
应用于ExpressionF
的子标题,从而生成Maybe
个子句点ExpressionF (Maybe Expression')
的表达式,如果有的话子标题为Nothing
,它将返回Nothing
,如果全部为Just x
,则返回Just (e::ExpressionF Expression')
。 Traverse实际上并没有像这样分成不同的阶段,但它更容易解释,就好像它一样。另请注意,您需要DeriveTraversable和DeriveFoldable的语言编译指示,以及ExpressionF
数据类型的派生语句。
缺点?好吧,对于其中一个,你的代码的污垢将随处可见一堆Exp
包装器。考虑以下简单术语simplfyMb
的应用:
simplifyMb (Exp $ Not (Exp $ Literal True))
要理解这一点也很重要,但如果你理解上面的traverse
和fmap
模式,你可以在很多地方重复使用它,这样做很好。我也相信以这种方式定义简化使得它对于特定ExpressionF
结构可能变成的任何内容都更加健壮。它没有提到它们,所以深度简化不会受到重构的影响。另一方面,reduce函数将是。
答案 3 :(得分:2)
继续您的Binary Op Expression Expression
想法,我们可以使用数据类型:
data Expression
= Literal Bool
| Variable String
| Not Expression
| Binary Op Expression Expression
deriving Eq
data Op = Or | And deriving Eq
辅助功能
{-# LANGUAGE ViewPatterns #-}
simplifyBinary :: Op -> Expression -> Expression -> Expression
simplifyBinary binop (simplify -> leftexp) (simplify -> rightexp) =
case oneway binop leftexp rightexp ++ oneway binop rightexp leftexp of
simplified : _ -> simplified
[] -> Binary binop leftexp rightexp
where
oneway :: Op -> Expression -> Expression -> [Expression]
oneway And (Literal False) _ = [Literal False]
oneway Or (Literal True) _ = [Literal True]
-- more cases here
oneway _ _ _ = []
这个想法是你将简化案例放在oneway
中,然后simplifyBinary
将负责反转参数,以避免编写对称案例。
答案 4 :(得分:2)
您可以为所有二进制操作编写通用的简化器:
simplifyBinWith :: (Bool -> Bool -> Bool) -- the boolean operation
-> (Expression -> Expression -> Expression) -- the constructor
-> Expression -> Expression -- the two operands
-> Expression) -- the simplified result
simplifyBinWith op cons a b = case (simplify a, simplify b) of
(Literal x, Literal y) -> Literal (op x y)
(Literal x, b') -> tryAll (x `op`) b'
(a', Literal y) -> tryAll (`op` y) a'
(a', b') -> cons a' b'
where
tryAll f term = case (f True, f False) of -- what would f do if term was true of false
(True, True) -> Literal True
(True, False) -> term
(False, True) -> Not term
(False, False) -> Literal False
这样,您的simplify
功能就会变成
simplify :: Expression -> Expression
simplify (Not e) = case simplify e of
(Literal b) -> Literal (not b)
e' -> Not e'
simplify (And a b) = simplifyBinWith (&&) And a b
simplify (Or a b) = simplifyBinWith (||) Or a b
simplify t = t
可以很容易地扩展到更多二进制操作。它也适用于Binary Op Expression Expression
这个想法,您将Op
而不是Expression
构造函数传递给simplifyBinWith
,simplify
中的模式可以概括:
simplify :: Expression -> Expression
simplify (Not e) = case simplify e of
(Literal b) -> Literal (not b)
e' -> Not e'
simplify (Binary op a b) = simplifyBinWith (case op of
And -> (&&)
Or -> (||)
Xor -> (/=)
Implies -> (<=)
Equals -> (==)
…
) op a b
simplify t = t
where
simplifyBinWith f op a b = case (simplify a, simplify b) of
(Literal x, Literal y) -> Literal (f x y)
…
(a', b') -> Binary op a' b'