我正在尝试使用keras
构建一个简单的线性模型,如下所示:
lin_model = Sequential([
Lambda(x_train, input_shape=(1,28,28)),
Flatten(),
Dense(10, activation='softmax')
])
但我一直收到以下错误:
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-86-664f3eb6b96f> in <module>()
2 Lambda(x_train, input_shape=(1,28,28)),
3 Flatten(),
----> 4 Dense(10, activation='softmax')
5 ])
6 lin_model.compile(Adam(), loss='categorical_crossentropy', metrics=['accuracy'])
/home/matar/anaconda2/lib/python2.7/site-packages/keras/models.pyc in __init__(self, layers, name)
399 if layers:
400 for layer in layers:
--> 401 self.add(layer)
402
403 def add(self, layer):
/home/matar/anaconda2/lib/python2.7/site-packages/keras/models.pyc in add(self, layer)
434 # and create the node connecting the current layer
435 # to the input layer we just created.
--> 436 layer(x)
437
438 if len(layer.inbound_nodes) != 1:
/home/matar/anaconda2/lib/python2.7/site-packages/keras/engine/topology.pyc in __call__(self, inputs, **kwargs)
594
595 # Actually call the layer, collecting output(s), mask(s), and shape(s).
--> 596 output = self.call(inputs, **kwargs)
597 output_mask = self.compute_mask(inputs, previous_mask)
598
/home/matar/anaconda2/lib/python2.7/site-packages/keras/layers/core.pyc in call(self, inputs, mask)
643 def call(self, inputs, mask=None):
644 arguments = self.arguments
--> 645 if has_arg(self.function, 'mask'):
646 arguments['mask'] = mask
647 return self.function(inputs, **arguments)
/home/matar/anaconda2/lib/python2.7/site-packages/keras/utils/generic_utils.pyc in has_arg(fn, name, accept_all)
226 """
227 if sys.version_info < (3,):
--> 228 arg_spec = inspect.getargspec(fn)
229 if accept_all and arg_spec.keywords is not None:
230 return True
/home/matar/anaconda2/lib/python2.7/inspect.pyc in getargspec(func)
813 func = func.im_func
814 if not isfunction(func):
--> 815 raise TypeError('{!r} is not a Python function'.format(func))
816 args, varargs, varkw = getargs(func.func_code)
817 return ArgSpec(args, varargs, varkw, func.func_defaults)
TypeError: array([[[[ nan, nan, nan, ..., nan,
nan, nan],
[ nan, nan, nan, ..., nan,
nan, nan],
[ nan, nan, -0.00408252, ..., -0.00783084,
nan, nan],
...,
[ nan, nan, -0.0066643 , ..., -0.00567531,
-0.00408252, nan],
[ nan, nan, nan, ..., -0.00408252,
nan, nan],
[ nan, nan, nan, ..., nan,
nan, nan]]],
[[[ nan, nan, nan, ..., nan,
nan, nan],
[ nan, nan, nan, ..., nan,
nan, nan],
[ nan, nan, -0.00408252, ..., -0.00783084,
nan, nan],
...,
[ nan, nan, -0.0066643 , ..., -0.00567531,
-0.00408252, nan],
[ nan, nan, nan, ..., -0.00408252,
nan, nan],
[ nan, nan, nan, ..., nan,
nan, nan]]],
[[[ nan, nan, nan, ..., nan,
nan, nan],
[ nan, nan, nan, ..., nan,
nan, nan],
[ nan, nan, -0.00408252, ..., -0.00783084,
nan, nan],
...,
[ nan, nan, -0.0066643 , ..., -0.00567531,
-0.00408252, nan],
[ nan, nan, nan, ..., -0.00408252,
nan, nan],
[ nan, nan, nan, ..., nan,
nan, nan]]],
...,
[[[ nan, nan, nan, ..., nan,
nan, nan],
[ nan, nan, nan, ..., nan,
nan, nan],
[ nan, nan, -0.00408252, ..., -0.00783084,
nan, nan],
...,
[ nan, nan, -0.0066643 , ..., -0.00567531,
-0.00408252, nan],
[ nan, nan, nan, ..., -0.00408252,
nan, nan],
[ nan, nan, nan, ..., nan,
nan, nan]]],
[[[ nan, nan, nan, ..., nan,
nan, nan],
[ nan, nan, nan, ..., nan,
nan, nan],
[ nan, nan, -0.00408252, ..., -0.00783084,
nan, nan],
...,
[ nan, nan, -0.0066643 , ..., -0.00567531,
-0.00408252, nan],
[ nan, nan, nan, ..., -0.00408252,
nan, nan],
[ nan, nan, nan, ..., nan,
nan, nan]]],
[[[ nan, nan, nan, ..., nan,
nan, nan],
[ nan, nan, nan, ..., nan,
nan, nan],
[ nan, nan, -0.00408252, ..., -0.00783084,
nan, nan],
...,
[ nan, nan, -0.0066643 , ..., -0.00567531,
-0.00408252, nan],
[ nan, nan, nan, ..., -0.00408252,
nan, nan],
[ nan, nan, nan, ..., nan,
nan, nan]]]]) is not a Python function
如何解决这个问题?
答案 0 :(得分:1)
正如您在问题名称中指出的那样:
'Array is not a python function' Error when building simple linear model in keras
x_train
是一个数组,Keras Lambda
需要一个函数:
在此处阅读更多内容:https://keras.io/layers/core/
基本上,您在创建模型时将输入传递给图层。这不是它的工作方式。
# first create model
model = Sequential()
model.add(Dense(13, input_dim=13, kernel_initializer='normal', activation='relu'))
model.add(Dense(1, kernel_initializer='normal'))
# Compile model
model.compile(loss='mean_squared_error', optimizer='adam')
# evaluate model with standardized dataset
estimator = KerasRegressor(build_fn=baseline_model, nb_epoch=100, batch_size=5, verbose=0)
results = cross_val_score(estimator, x_train, y_input)