这是我第一次尝试进行模型优化。 我使用DeSolve模拟模型并尝试使用耦合到R中的optim-function的目标函数进行优化。我通常使用Nelder-Mead或L-BFGS-B。
这是模型功能:
library(deSolve)
model <- function(t, y, parms) {
with(as.list(c(y, parms)), {
y1=400*sin((2*pi)/(10^Tlog)*t)+600
dY2 = ((kA1*(Atot-y2)*y1^nA)/(KmA^nA+y1^nA)-kA2*y2)
dY3 = ((kD1*(Dtot-y3)*y1^nD)/(KmD^nD+y1^nD)-kD2*y3)
dY4 = ((kP1*(Ptot-y4)*y2^nP1)/(KmP1^nP1+y2^nP1)-(kP2*(y4)*y3^nP2)/(KmP2^nP2+y3^nP2))
dY5 = y2
dY6 = y3
dY7 = y4
list(c(dY2, dY3, dY4, dY5, dY6, dY7))
})
}
这里是优化函数 - 我每次优化迭代模拟三次。请注意,我只优化了所有参数的子集,一个特定参数(Tlog)针对三种模拟中的每一种都以目标为导向进行了更改:
ls <- function(par,extra) {
if(min(par)<0.01 || max(par) >10000) {
return(NA)
}
with(as.list(c(par, extra)), {
#1
parms <- c(vol=vol, kA1=kA1, nA=nA, KmA=KmA, Atot=Atot, kA2=kA2,
kD1=kD1, nD=nD, KmD=KmD, Dtot=Dtot, kD2=kD2,
kP1=kP1, nP1=nP1, KmP1=KmP1,Ptot=Ptot,kP2=kP2,nP2=nP2,KmP2=KmP2,
Tlog=-1)
yini <- c(y2 = 0, y3 = 0, y4 = 0, y5 = 0, y6 = 0, y7 = 0)
times <- seq(from = 0, to = 100, by = 0.01)
out <- as.data.frame(ode (times = times, y = yini, func = model, parms = parms, ynames = FALSE))
out[,5:7]=out[,5:7]/out[,1]
colnames(out)=c("t[s]","A[nM]","D[nM]","P[nM]","A_act[nM]","D_act[nM]","P_act[nM]")
O_1=(out$`P_act[nM]`[nrow(out)-1])
#2
parms <- c(vol=vol, kA1=kA1, nA=nA, KmA=KmA, Atot=Atot, kA2=kA2,
kD1=kD1, nD=nD, KmD=KmD, Dtot=Dtot, kD2=kD2,
kP1=kP1, nP1=nP1, KmP1=KmP1,Ptot=Ptot,kP2=kP2,nP2=nP2,KmP2=KmP2,
Tlog=1)
# y2 = A; y3 = D; y4 = P; y5 = A_Act; y6 = D_Act; y7 = P_Act
yini <- c(y2 = 0, y3 = 0, y4 = 0, y5 = 0, y6 = 0, y7 = 0)
times <- seq(from = 0, to = 1000, by = 0.01)
out <- as.data.frame(ode (times = times, y = yini, func = model, parms = parms, ynames = FALSE))
out[,5:7]=out[,5:7]/out[,1]
colnames(out)=c("t[s]","A[nM]","D[nM]","P[nM]","A_act[nM]","D_act[nM]","P_act[nM]")
O_2=(out$`P_act[nM]`[nrow(out)-1])
#3
parms <- c(vol=vol, kA1=kA1, nA=nA, KmA=KmA, Atot=Atot, kA2=kA2,
kD1=kD1, nD=nD, KmD=KmD, Dtot=Dtot, kD2=kD2,
kP1=kP1, nP1=nP1, KmP1=KmP1,Ptot=Ptot,kP2=kP2,nP2=nP2,KmP2=KmP2,
Tlog=3)
# y2 = A; y3 = D; y4 = P; y5 = A_Act; y6 = D_Act; y7 = P_Act
yini <- c(y2 = 0, y3 = 0, y4 = 0, y5 = 0, y6 = 0, y7 = 0)
times <- seq(from = 0, to = 10000, by = 0.01)
out <- as.data.frame(ode (times = times, y = yini, func = model, parms = parms, ynames = FALSE))
out[,5:7]=out[,5:7]/out[,1]
colnames(out)=c("t[s]","A[nM]","D[nM]","P[nM]","A_act[nM]","D_act[nM]","P_act[nM]")
O_3=(out$`P_act[nM]`[nrow(out)-1])
if(O_2<(max(c(O_1,O_3)))) {
return(NA)
}
Objective=1/(abs(O_2-O_1))+1/(abs(O_2-O_3))
print(c(O_1,O_2,O_3))
print(Objective)
print("####")
return(Objective)
})
}
最后这里是使用初始参数集调用优化函数:
P_init=matrix(ncol=1,nrow=10)
for(i in 1:length(P_init)) {
P_init[i,1]=runif(1,0.001,10000)
}
Res=optim(par=c(kA1=P_init[1,1], KmA=P_init[2,1], kA2=P_init[3,1],
kD1=P_init[4,1], KmD=P_init[5,1],kD2=P_init[6,1],
kP1=P_init[7,1], KmP1=P_init[8,1],kP2=P_init[9,1],KmP2=P_init[10,1]),
extra=c(vol=1,nA=4,nD=4,nP1=4,nP2=4,Atot=5000,Dtot=5000,Ptot=5000),
fn=ls,control=list(trace=TRUE))
如您所见,目标函数由每次迭代的三次模拟中的每一次的结果组成。我实现了一个if语句,暗示如果满足某个条件就应该返回NA。显然这不起作用。算法只是取消了。我可以说它应该返回一个不合需要的数值作为客观值,但这可能会导致函数相信它在连续发生时连续发生收敛。
您是否知道如果条件满足,如何强制algorihm忽略当前参数集并转而跳转到另一个条件?
我希望这是有道理的 - 祝福并多多谢!