我试图用Dlib运行Qt。发生的事情是来自Dlib的每个算法都需要CUDA崩溃而没有错误,如果我在visual studio上运行相同的代码它完美地工作。 Qt和Dlib是使用Visual Studio 2015 x64构建的,CUDA版本是8.0。
代码是Dlib的一些示例,可以使用CUDA获得更好的性能:
#include <iostream>
#include <dlib/dnn.h>
#include <dlib/data_io.h>
#include <dlib/image_processing.h>
#include <dlib/gui_widgets.h>
using namespace std;
using namespace dlib;
// ----------------------------------------------------------------------------------------
template <long num_filters, typename SUBNET> using con5d = con<num_filters,5,5,2,2,SUBNET>;
template <long num_filters, typename SUBNET> using con5 = con<num_filters,5,5,1,1,SUBNET>;
template <typename SUBNET> using downsampler = relu<affine<con5d<32, relu<affine<con5d<32, relu<affine<con5d<16,SUBNET>>>>>>>>>;
template <typename SUBNET> using rcon5 = relu<affine<con5<45,SUBNET>>>;
using net_type = loss_mmod<con<1,9,9,1,1,rcon5<rcon5<rcon5<downsampler<input_rgb_image_pyramid<pyramid_down<6>>>>>>>>;
// ----------------------------------------------------------------------------------------
int main(int argc, char** argv) try
{
if (argc == 1)
{
cout << "Call this program like this:" << endl;
cout << "./dnn_mmod_face_detection_ex mmod_human_face_detector.dat faces/*.jpg" << endl;
cout << "\nYou can get the mmod_human_face_detector.dat file from:\n";
cout << "http://dlib.net/files/mmod_human_face_detector.dat.bz2" << endl;
return 0;
}
net_type net;
deserialize(argv[1]) >> net;
image_window win;
for (int i = 2; i < argc; ++i)
{
matrix<rgb_pixel> img;
load_image(img, argv[i]);
// Upsampling the image will allow us to detect smaller faces but will cause the
// program to use more RAM and run longer.
while(img.size() < 1800*1800)
pyramid_up(img);
// Note that you can process a bunch of images in a std::vector at once and it runs
// much faster, since this will form mini-batches of images and therefore get
// better parallelism out of your GPU hardware. However, all the images must be
// the same size. To avoid this requirement on images being the same size we
// process them individually in this example.
auto dets = net(img);
win.clear_overlay();
win.set_image(img);
for (auto&& d : dets)
win.add_overlay(d);
cout << "Hit enter to process the next image." << endl;
cin.get();
}
}
catch(std::exception& e)
{
cout << e.what() << endl;
}
程序在线崩溃&#34; auto dets = net(img);&#34;
我的.pro文件:
INCLUDEPATH += C:\dlib\dlib-19.4
LIBS += -LC:\dlib\dlib-19.4\mybuild\dlib_build\Release -ldlib
INCLUDEPATH += "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\include"
LIBS +="C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\lib\x64\curand.lib"
LIBS +="C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\lib\x64\cublas.lib"
LIBS +="C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\lib\x64\cublas_device.lib"
LIBS +="C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\lib\x64\cudnn.lib"
LIBS +="C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\lib\x64\cudart_static.lib"
感谢您的关注。
答案 0 :(得分:1)
试试这个:
LIBS += L"C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\lib\x64"
LIBS += -lcurand -lcublas -lcublas_device -lcudnn -lcudart_static
答案 1 :(得分:1)
我只需要在我的项目中定义DLIB_USE_CUDA就行了。