我的代码中有以下两行:
numSequences = tf.placeholder(tf.float32, shape=())
...
prediction = tf.reshape(predictionFlat, [numSequences, sequenceLength, vocabSize])
是否可以从numSequences
张量中提取标量值,以便在定义prediction
张量的形状时将其用作值?
修改
以下是我的更多代码:
x = tf.placeholder(tf.float32, [None, sequenceLength, vocabSize])
y = tf.placeholder(tf.float32, [None, sequenceLength, vocabSize])
numSequences = tf.placeholder(tf.float32, shape=())
xFlat = tf.contrib.layers.flatten(x) # [batchSize, sequenceLength*vocabSize]
W = tf.Variable(tf.random_normal([hiddenDimension, sequenceLength, vocabSize]))
b = tf.Variable(tf.random_normal([1, sequenceLength, vocabSize]))
WFlat = tf.contrib.layers.flatten(W)
bFlat = tf.contrib.layers.flatten(b)
cell = rnn.BasicLSTMCell(hiddenDimension, forget_bias=forgetRate)
outputs, states = tf.nn.static_rnn(cell, [xFlat], dtype=tf.float32)
predictionFlat = tf.add(tf.matmul(outputs[0], WFlat), bFlat) # outputs = [np.array([batchSize, hiddenDimension])] -> outputs[0] = [batchSize, hiddenDimension]
prediction = tf.reshape(predictionFlat, [numSequences, sequenceLength, vocabSize])
编辑2
我正在尝试做类似的事情,我需要将sequenceLength
变量(我的张量形状的参数)作为占位符而不是固定值。我的实现方式与numSequences
的实现方式相同,但我收到的错误如下所示。我无法理解这与我最初提出的numSequences
实施方式有何不同。
代码:
numSequences = tf.placeholder(tf.int32, shape=())
seqLength = tf.placeholder(tf.int32, shape=())
x = tf.placeholder(tf.float32, [None, seqLength, vocabSize])
y = tf.placeholder(tf.float32, [None, seqLength, vocabSize])
xFlat = tf.contrib.layers.flatten(x) # [batchSize, sequenceLength*vocabSize]
W = tf.Variable(tf.random_normal([hiddenDimension, seqLength, vocabSize]))
b = tf.Variable(tf.random_normal([1, seqLength, vocabSize]))
WFlat = tf.contrib.layers.flatten(W) # [hiddenDimension, sequenceLength*vocabSize]
bFlat = tf.contrib.layers.flatten(b) # [1, sequenceLength*vocabSize]
cell = rnn.BasicLSTMCell(hiddenDimension, forget_bias=forgetRate)
outputs, states = tf.nn.static_rnn(cell, [xFlat], dtype=tf.float32) # outputs = [[batchSize, hiddenDimension]]
predictionFlat = tf.add(tf.matmul(outputs[0], WFlat), bFlat) # outputs[0] = [batchSize, hiddenDimension]
prediction = tf.reshape(predictionFlat, [numSequences, seqLength, vocabSize])
错误:的
x = tf.placeholder(tf.float32, [None, seqLength, vocabSize])
File "/usr/lib/python3.6/site-packages/tensorflow/python/ops/array_ops.py", line 1530, in placeholder
return gen_array_ops._placeholder(dtype=dtype, shape=shape, name=name)
File "/usr/lib/python3.6/site-packages/tensorflow/python/ops/gen_array_ops.py", line 1954, in _placeholder
name=name)
File "/usr/lib/python3.6/site-packages/tensorflow/python/framework/op_def_library.py", line 705, in apply_op
attr_value.shape.CopyFrom(_MakeShape(value, key))
File "/usr/lib/python3.6/site-packages/tensorflow/python/framework/op_def_library.py", line 198, in _MakeShape
return tensor_shape.as_shape(v).as_proto()
File "/usr/lib/python3.6/site-packages/tensorflow/python/framework/tensor_shape.py", line 798, in as_shape
return TensorShape(shape)
File "/usr/lib/python3.6/site-packages/tensorflow/python/framework/tensor_shape.py", line 434, in __init__
self._dims = [as_dimension(d) for d in dims_iter]
File "/usr/lib/python3.6/site-packages/tensorflow/python/framework/tensor_shape.py", line 434, in <listcomp>
self._dims = [as_dimension(d) for d in dims_iter]
File "/usr/lib/python3.6/site-packages/tensorflow/python/framework/tensor_shape.py", line 376, in as_dimension
return Dimension(value)
File "/usr/lib/python3.6/site-packages/tensorflow/python/framework/tensor_shape.py", line 32, in __init__
self._value = int(value)
TypeError: int() argument must be a string, a bytes-like object or a number, not 'Tensor'
答案 0 :(得分:2)
是的,张量形状本身通常可以是张量,但它们必须是整数类型。
import tensorflow as tf
x = tf.constant([2, 3], dtype=tf.int32)
y = tf.zeros((x[0], x[1], 5))
sess = tf.InteractiveSession()
print(y.eval().shape)
# (2, 3, 5)
修改强>
更接近你的例子,
import tensorflow as tf
x = tf.placeholder(tf.int32, shape=())
y = tf.zeros((500,))
sess = tf.InteractiveSession()
print(sess.run(tf.shape(tf.reshape(y, [x, x, 5])), {x: 10}))
# [10 10 5]
当然,重塑应该保留y
中元素的总数,因此它的用处有限。
编辑2
您无法通过其他位置参数设置一个占位符的形状。由于占位符是同时提供的,因此没有意义。提供一个形状未知的占位符然后提供参数化重塑操作,就像在第一个示例中一样。