Spark 2 Dataframe保存到Hive - 压缩

时间:2017-08-02 04:53:03

标签: apache-spark dataframe hive spark-dataframe

我正在使用spark会话将数据框保存到hive表。代码如下。

df.write.mode(SaveMode.Append).format("orc").insertInto("table")

数据来自kafka。这可能是一整天都有大量数据。是否,火花数据帧保存在内部做hive压缩?如果不是,在不影响表插入的情况下定期进行压缩的最佳方法是什么。

2 个答案:

答案 0 :(得分:0)

在您的示例中,您应添加partitionBy,因为数据量可能很大

df.write..mode(SaveMode.Append).format("orc").partitionBy("age")

或者您也可以存档如下 我这样做的方法是首先在Spark作业本身注册临时表,然后利用HiveContext的sql方法使用临时表中的数据在hive中创建一个新表。例如,如果我有一个数据帧df和HiveContext hc,则一般过程是:

df.registerTempTable("my_temp_table")
hc.sql("Insert into overwrite table_name PARTITION SELECT a,b, PARTITION_col  from my_temp_table")

答案 1 :(得分:0)

公共类HiveCompaction {

revalidate()

} 用法: 字符串表=“ staging.dummy_table”;

private static SparkConf sparkConf;

private static JavaSparkContext sc;

private static SparkSession sqlContext = springutil.getBean("testSparkSession");

private static HashMap<Object, Object> partitionColumns;

public static void compact(String table, Dataset<Row> dataToCompact) {

    logger.info("Started Compaction for - " + table);

    if (!partitionColumns.containsKey(table)) {
        compact_table_without_partition(table, dataToCompact);
    } else {
        compact_table_with_partition(table, dataToCompact, partitionColumns);
    }
    logger.info("Data Overwritten in HIVE table : " + table + " successfully");

}

private static void compact_table_with_partition(String table, Dataset<Row> dataToCompact,
        Map<Object, Object> partitionData) {

    String[] partitions = ((String) partitionData.get(table)).split(",");

    List<Map<Object, Object>> partitionMap = getPartitionsToCompact(dataToCompact, Arrays.asList(partitions));

    for (Map mapper : partitionMap) {
    //  sqlContext.sql("REFRESH TABLE staging.dummy_table");
        String query = "select * from " + table + " where " + frameQuery(" and ", mapper);
        Dataset<Row> originalTable = sqlContext.sql(query.toString());

        if (originalTable.count() == 0) {
            dataToCompact.write().mode("append").format("parquet").insertInto(table);
        } else {
            String location = getHdfsFileLocation(table);
            String uuid = getUUID();
            updateTable(table, dataToCompact, originalTable, uuid);
            String destinationPath = framePath(location, frameQuery("/", mapper), uuid);
            sqlContext.sql("Alter table " + table + " partition(" + frameQuery(",", mapper) + ") set location '"
                    + destinationPath + "'");
        }
    }
}

private static void compact_table_without_partition(String table, Dataset<Row> dataToCompact) {
    String query = "select * from " + table;
    Dataset<Row> originalTable = sqlContext.sql(query.toString());
    if (originalTable.count() == 0) {
        dataToCompact.write().mode("append").format("parquet").insertInto(table);
    } else {
        String location = getHdfsFileLocation(table);
        String uuid = getUUID();
        String destinationPath = framePath(location, null, uuid);
        updateTable(table, dataToCompact, originalTable, uuid);
        sqlContext.sql("Alter table " + table + " set location '" + destinationPath + "'");
    }

}

private static void updateTable(String table, Dataset<Row> dataToCompact, Dataset<Row> originalTable, String uuid) {
    Seq<String> joinColumnSeq = getPrimaryKeyColumns();
    Dataset<Row> unModifiedRecords = originalTable.join(dataToCompact, joinColumnSeq, "leftanti");
    Dataset<Row> dataToInsert1 = dataToCompact.withColumn("uuid", functions.lit(uuid));
    Dataset<Row> dataToInsert2 = unModifiedRecords.withColumn("uuid", functions.lit(uuid));
    dataToInsert1.write().mode("append").format("parquet").insertInto(table + "_compacted");
    dataToInsert2.write().mode("append").format("parquet").insertInto(table + "_compacted");

}

private static String getHdfsFileLocation(String table) {
    Dataset<Row> tableDescription = sqlContext.sql("describe formatted " + table + "_compacted");
    List<Row> rows = tableDescription.collectAsList();
    String location = null;
    for (Row r : rows) {
        if (r.get(0).equals("Location")) {
            location = r.getString(1);
            break;
        }
    }
    return location;
}

private static String frameQuery(String delimiter, Map mapper) {
    StringBuilder modifiedQuery = new StringBuilder();
    int i = 1;
    for (Object key : mapper.keySet()) {
        modifiedQuery.append(key + "=");
        modifiedQuery.append(mapper.get(key));
        if (mapper.size() > i)
            modifiedQuery.append(delimiter);
        i++;
    }
    return modifiedQuery.toString();
}

private static String framePath(String location, String framedpartition, String uuid) {
    StringBuilder loc = new StringBuilder(location);

    loc.append("/");
    if (StringUtils.isNotEmpty(framedpartition)) {
        loc.append(framedpartition);
        loc.append("/");
    }
    loc.append("uuid=");
    loc.append(uuid);
    logger.info(loc.toString());
    return loc.toString();
}

public static Seq<String> getColumnSeq(List<String> joinColumns) {
    List<String> cols = new ArrayList<>(joinColumns.size());
    for (int i = 0; i < joinColumns.size(); i++) {
        cols.add(joinColumns.get(i).toLowerCase());
    }
    return JavaConverters.asScalaBufferConverter(cols).asScala().readOnly();
}

private static String getUUID() {
    StringBuilder uri = new StringBuilder();
    Random rand = new Random();
    int randNum = rand.nextInt(200);
    String uuid = DateTimeFormatter.ofPattern("yyyyMMddHHmmSSS").format(LocalDateTime.now()).toString()
            + (String.valueOf(randNum));
    return uuid;
}

private static List<Map<Object, Object>> getPartitionsToCompact(Dataset<Row> filteredRecords,
        List<String> partitions) {
    Column[] columns = new Column[partitions.size()];
    int index = 0;
    for (String c : partitions) {
        columns[index] = new Column(c);
        index++;
    }
    Dataset<Row> partitionsToCompact = filteredRecords.select(columns)
            .distinct(); /**
                             * TOD : add filter condition for selecting
                             * known paritions
                             */
    JavaRDD<Map<Object, Object>> querywithPartitions = partitionsToCompact.toJavaRDD().map(row -> {
        return convertRowToMap(row);
    });

    return querywithPartitions.collect();
}

private static Map<Object, Object> convertRowToMap(Row row) {
    StructField[] fields = row.schema().fields();
    List<StructField> structFields = Arrays.asList(fields);
    Map<Object, Object> a = structFields.stream()
            .collect(Collectors.toMap(e -> ((StructField) e).name(), e -> row.getAs(e.name())));
    return a;
}

private static Seq<String> getPrimaryKeyColumns() {
    ArrayList<String> primaryKeyColumns = new ArrayList<String>();
    Seq<String> joinColumnSeq = getColumnSeq(primaryKeyColumns);
    return joinColumnSeq;
}

/*
 * public static void initSpark(String jobname) { sparkConf = new
 * SparkConf().setAppName(jobname); sparkConf.setMaster("local[3]");
 * sparkConf.set("spark.driver.allowMultipleContexts", "true"); sc = new
 * JavaSparkContext(); sqlContext = new SQLContext(sc); }
 */

public static HashMap<Object, Object> getParitionColumns() {
    HashMap<Object, Object> paritionColumns = new HashMap<Object, Object>();
    paritionColumns.put((Object) "staging.dummy_table", "trade_date,dwh_business_date,region_cd");
    return paritionColumns;
}

public static void initialize(String table) {
    // initSpark("Hive Table Compaction -" + table);
    partitionColumns = getParitionColumns();

}