Tensorflow排队数据

时间:2017-08-01 21:53:56

标签: python tensorflow queueing

我想知道为什么在使用未注释的版本时,此代码中 x_input_data 的实现将无法正常工作,但注释版本将会如此。谁知道原因?我觉得它与指向对象/值的指针有关。谢谢!

import tensorflow as tf
from random import randint

def generate_random_input():
    x = []
    for a in range(6):
        x.append(randint(0,9))
    return x

x_input_data = tf.cast(generate_random_input(), tf.float32)
# x_input_data = tf.random_normal([6], mean=-1, stddev=4)     <----HERE

q = tf.FIFOQueue(capacity=3, dtypes=tf.float32)

x_input_data = tf.Print(x_input_data, data=[x_input_data], message="Raw inputs data generated:", summarize=6)
enqueue_op = q.enqueue_many(x_input_data)

numberOfThreads = 1 
qr = tf.train.QueueRunner(q, [enqueue_op] * numberOfThreads)
tf.train.add_queue_runner(qr) 

input = q.dequeue() 
input = tf.Print(input, data=[q.size(), input], message="Nb elements left, input:")

# fake graph: START
y = input + 1
# fake graph: END 

with tf.Session() as sess:
    coord = tf.train.Coordinator()
    threads = tf.train.start_queue_runners(coord=coord)

    for steps in range(100):
        sess.run(y)

    coord.request_stop()
    coord.join(threads)

0 个答案:

没有答案