我需要知道我的残差是否相关。我没有找到在Databricks上使用Spark-Scala的方法。 我得出结论,我应该将我的项目导出到R以使用acf function。
有人知道在Databricks上使用Spark-Scala来做这件事吗?
对于那些需要更多信息的人:我目前正致力于销售预测。我使用了不同功能的回归森林。然后,我需要评估我的预测质量。为了检查这一点,我读了paper这个残差是一个好方法,可以看出你的预测模型是好还是坏。在任何情况下,你仍然可以改进它,但它只是对我的预测模型发表意见并将其与其他模型进行比较。
目前,我有一个类似下面的数据框。它是测试数据/样本外数据的一部分。 (我将预测和残差转换为IntegerType,这就是为什么在第3行40-17 = 22 )
答案 0 :(得分:1)
我正在使用Spark 2.1.1
。
您可以使用spark ml library function
找到列之间的相关性让我们先导入类。
import org.apache.spark.sql.functions.corr
import org.apache.spark.mllib.linalg._
import org.apache.spark.mllib.stat.Statistics
现在准备输入DataFrame:
scala> val seqRow = Seq(
| ("2017-04-27",13,21),
| ("2017-04-26",7,16),
| ("2017-04-25",40,17),
| ("2017-04-24",17,17),
| ("2017-04-21",10,20),
| ("2017-04-20",9,19),
| ("2017-04-19",30,30),
| ("2017-04-18",18,25),
| ("2017-04-14",32,28),
| ("2017-04-13",39,18),
| ("2017-04-12",2,4),
| ("2017-04-11",8,24),
| ("2017-04-10",18,27),
| ("2017-04-07",6,17),
| ("2017-04-06",13,29),
| ("2017-04-05",10,17),
| ("2017-04-04",6,8),
| ("2017-04-03",20,32)
| )
seqRow: Seq[(String, Int, Int)] = List((2017-04-27,13,21), (2017-04-26,7,16), (2017-04-25,40,17), (2017-04-24,17,17), (2017-04-21,10,20), (2017-04-20,9,19), (2017-04-19,30,30), (2017-04-18,18,25), (2017-04-14,32,28), (2017-04-13,39,18), (2017-04-12,2,4), (2017-04-11,8,24), (2017-04-10,18,27), (2017-04-07,6,17), (2017-04-06,13,29), (2017-04-05,10,17), (2017-04-04,6,8), (2017-04-03,20,32))
scala> val rdd = sc.parallelize(seqRow)
rdd: org.apache.spark.rdd.RDD[(String, Int, Int)] = ParallelCollectionRDD[51] at parallelize at <console>:34
scala> val input_df = spark.createDataFrame(rdd).toDF("date","amount","prediction").withColumn("residuals",'amount - 'prediction)
input_df: org.apache.spark.sql.DataFrame = [date: string, amount: int ... 2 more fields]
scala> input_df.show(false)
+----------+------+----------+---------+
|date |amount|prediction|residuals|
+----------+------+----------+---------+
|2017-04-27|13 |21 |-8 |
|2017-04-26|7 |16 |-9 |
|2017-04-25|40 |17 |23 |
|2017-04-24|17 |17 |0 |
|2017-04-21|10 |20 |-10 |
|2017-04-20|9 |19 |-10 |
|2017-04-19|30 |30 |0 |
|2017-04-18|18 |25 |-7 |
|2017-04-14|32 |28 |4 |
|2017-04-13|39 |18 |21 |
|2017-04-12|2 |4 |-2 |
|2017-04-11|8 |24 |-16 |
|2017-04-10|18 |27 |-9 |
|2017-04-07|6 |17 |-11 |
|2017-04-06|13 |29 |-16 |
|2017-04-05|10 |17 |-7 |
|2017-04-04|6 |8 |-2 |
|2017-04-03|20 |32 |-12 |
+----------+------+----------+---------+
行residuals
和2017-04-14
的{{1}}值不匹配,因为我为2017-04-13
减去amount - prediction
现在继续前进以计算所有列之间的相关性。 此方法用于计算相关性,如果列数更多,则需要将每列与其他列相关联。
首先我们删除了不计算相关性的列
residuals
由于有两列以上的相关性,我们需要找到相关矩阵。 为了计算相关矩阵,我们需要 RDD [Vector] ,你可以在spark示例中看到相关性。
scala> val drop_date_df = input_df.drop('date)
drop_date_df: org.apache.spark.sql.DataFrame = [amount: int, prediction: int ... 1 more field]
scala> drop_date_df.show
+------+----------+---------+
|amount|prediction|residuals|
+------+----------+---------+
| 13| 21| -8|
| 7| 16| -9|
| 40| 17| 23|
| 17| 17| 0|
| 10| 20| -10|
| 9| 19| -10|
| 30| 30| 0|
| 18| 25| -7|
| 32| 28| 4|
| 39| 18| 21|
| 2| 4| -2|
| 8| 24| -16|
| 18| 27| -9|
| 6| 17| -11|
| 13| 29| -16|
| 10| 17| -7|
| 6| 8| -2|
| 20| 32| -12|
+------+----------+---------+
列的顺序保持不变,但是您将列名称松散。 你可以找到关于相关矩阵结构的好资源。
因为您想要找到残差与其他两列的相关性。 我们可以探索其他选择
Hive corr UDAF
scala> val dense_rdd = drop_date_df.rdd.map{row =>
| val first = row.getAs[Integer]("amount")
| val second = row.getAs[Integer]("prediction")
| val third = row.getAs[Integer]("residuals")
| Vectors.dense(first.toDouble,second.toDouble,third.toDouble)}
dense_rdd: org.apache.spark.rdd.RDD[org.apache.spark.mllib.linalg.Vector] = MapPartitionsRDD[62] at map at <console>:40
scala> val correlMatrix: Matrix = Statistics.corr(dense_rdd, "pearson")
correlMatrix: org.apache.spark.mllib.linalg.Matrix =
1.0 0.40467032516705076 0.782939330961529
0.40467032516705076 1.0 -0.2520531290688281
0.782939330961529 -0.2520531290688281 1.0
Spark corr 功能 link
scala> drop_date_df.createOrReplaceTempView("temp_table")
scala> val corr_query_df = spark.sql("select corr(amount,residuals) as amount_residuals_corr,corr(prediction,residuals) as prediction_residual_corr from temp_table")
corr_query_df: org.apache.spark.sql.DataFrame = [amount_residuals_corr: double, prediction_residual_corr: double]
scala> corr_query_df.show
+---------------------+------------------------+
|amount_residuals_corr|prediction_residual_corr|
+---------------------+------------------------+
| 0.7829393309615287| -0.252053129068828|
+---------------------+------------------------+