我有一个数据框,提供两个整数列,其中包含年份的一年和一周:
import pandas as pd
import numpy as np
L1 = [43,44,51,2,5,12]
L2 = [2016,2016,2016,2017,2017,2017]
df = pd.DataFrame({"Week":L1,"Year":L2})
df
Out[72]:
Week Year
0 43 2016
1 44 2016
2 51 2016
3 2 2017
4 5 2017
5 12 2017
我需要从这两个数字创建一个datetime-object。
我尝试了这个,但它引发了一个错误:
df["DT"] = df.apply(lambda x: np.datetime64(x.Year,'Y') + np.timedelta64(x.Week,'W'),axis=1)
然后我尝试了这个,它有效,但是给出了错误的结果,就是它完全忽略了一周:
df["S"] = df.Week.astype(str)+'-'+df.Year.astype(str)
df["DT"] = df["S"].apply(lambda x: pd.to_datetime(x,format='%W-%Y'))
df
Out[74]:
Week Year S DT
0 43 2016 43-2016 2016-01-01
1 44 2016 44-2016 2016-01-01
2 51 2016 51-2016 2016-01-01
3 2 2017 2-2017 2017-01-01
4 5 2017 5-2017 2017-01-01
5 12 2017 12-2017 2017-01-01
我真的迷失在Python的datetime
,Numpy的datetime64
和pandas Timestamp
之间,你能告诉我它是怎么回事吗?&#39 ; s做得对吗?
我使用Python 3,如果它与任何方式相关。
答案 0 :(得分:9)
您需要%w
来指定哪一天是一周的第一天:
df["DT"] = pd.to_datetime(df.Week.astype(str)+
df.Year.astype(str).add('-0') ,format='%W%Y-%w')
print (df)
Week Year DT
0 43 2016 2016-10-30
1 44 2016 2016-11-06
2 51 2016 2016-12-25
3 2 2017 2017-01-15
4 5 2017 2017-02-05
5 12 2017 2017-03-26
df["DT"] = pd.to_datetime(df.Week.astype(str)+
df.Year.astype(str).add('-1') ,format='%W%Y-%w')
print (df)
Week Year DT
0 43 2016 2016-10-24
1 44 2016 2016-10-31
2 51 2016 2016-12-19
3 2 2017 2017-01-09
4 5 2017 2017-01-30
5 12 2017 2017-03-20
df["DT"] = pd.to_datetime(df.Week.astype(str)+
df.Year.astype(str).add('-2') ,format='%W%Y-%w')
print (df)
Week Year DT
0 43 2016 2016-10-25
1 44 2016 2016-11-01
2 51 2016 2016-12-20
3 2 2017 2017-01-10
4 5 2017 2017-01-31
5 12 2017 2017-03-21
答案 1 :(得分:7)
试试这个:
In [19]: pd.to_datetime(df.Year.astype(str), format='%Y') + \
pd.to_timedelta(df.Week.mul(7).astype(str) + ' days')
Out[19]:
0 2016-10-28
1 2016-11-04
2 2016-12-23
3 2017-01-15
4 2017-02-05
5 2017-03-26
dtype: datetime64[ns]
最初我在
中有时间戳s
从UNIX纪元时间戳解析它要容易得多:
df['Date'] = pd.to_datetime(df['UNIX_Time'], unit='s')
对于10M行DF 计时:
设定:
In [26]: df = pd.DataFrame(pd.date_range('1970-01-01', freq='1T', periods=10**7), columns=['date'])
In [27]: df.shape
Out[27]: (10000000, 1)
In [28]: df['unix_ts'] = df['date'].astype(np.int64)//10**9
In [30]: df
Out[30]:
date unix_ts
0 1970-01-01 00:00:00 0
1 1970-01-01 00:01:00 60
2 1970-01-01 00:02:00 120
3 1970-01-01 00:03:00 180
4 1970-01-01 00:04:00 240
5 1970-01-01 00:05:00 300
6 1970-01-01 00:06:00 360
7 1970-01-01 00:07:00 420
8 1970-01-01 00:08:00 480
9 1970-01-01 00:09:00 540
... ... ...
9999990 1989-01-05 10:30:00 599999400
9999991 1989-01-05 10:31:00 599999460
9999992 1989-01-05 10:32:00 599999520
9999993 1989-01-05 10:33:00 599999580
9999994 1989-01-05 10:34:00 599999640
9999995 1989-01-05 10:35:00 599999700
9999996 1989-01-05 10:36:00 599999760
9999997 1989-01-05 10:37:00 599999820
9999998 1989-01-05 10:38:00 599999880
9999999 1989-01-05 10:39:00 599999940
[10000000 rows x 2 columns]
检查:
In [31]: pd.to_datetime(df.unix_ts, unit='s')
Out[31]:
0 1970-01-01 00:00:00
1 1970-01-01 00:01:00
2 1970-01-01 00:02:00
3 1970-01-01 00:03:00
4 1970-01-01 00:04:00
5 1970-01-01 00:05:00
6 1970-01-01 00:06:00
7 1970-01-01 00:07:00
8 1970-01-01 00:08:00
9 1970-01-01 00:09:00
...
9999990 1989-01-05 10:30:00
9999991 1989-01-05 10:31:00
9999992 1989-01-05 10:32:00
9999993 1989-01-05 10:33:00
9999994 1989-01-05 10:34:00
9999995 1989-01-05 10:35:00
9999996 1989-01-05 10:36:00
9999997 1989-01-05 10:37:00
9999998 1989-01-05 10:38:00
9999999 1989-01-05 10:39:00
Name: unix_ts, Length: 10000000, dtype: datetime64[ns]
定时:
In [32]: %timeit pd.to_datetime(df.unix_ts, unit='s')
10 loops, best of 3: 156 ms per loop
结论:我认为转换10.000.000行的156毫秒并不是那么慢
答案 2 :(得分:3)
从2019年开始的几周中发生了一些麻烦。ISO-8601标准将2018年12月31日指定为2019年的第1周。其他方法基于:
pd.to_datetime(df.Week.astype(str)+
df.Year.astype(str).add('-2') ,format='%W%Y-%w')
从2019年开始,结果会有所不同。
为了符合ISO-8601标准,您必须执行以下操作:
import pandas as pd
import datetime
L1 = [52,53,1,2,5,52]
L2 = [2018,2018,2019,2019,2019,2019]
df = pd.DataFrame({"Week":L1,"Year":L2})
df['ISO'] = df['Year'].astype(str) + '-W' + df['Week'].astype(str) + '-1'
df['DT'] = df['ISO'].map(lambda x: datetime.datetime.strptime(x, "%G-W%V-%u"))
print(df)
它打印:
Week Year ISO DT
0 52 2018 2018-W52-1 2018-12-24
1 53 2018 2018-W53-1 2018-12-31
2 1 2019 2019-W1-1 2018-12-31
3 2 2019 2019-W2-1 2019-01-07
4 5 2019 2019-W5-1 2019-01-28
5 52 2019 2019-W52-1 2019-12-23
将忽略2018年的第53周并将其映射到2019年的第1周。
答案 3 :(得分:1)
如果您想关注ISO Week Date
每周从星期一开始。每个星期的年份是公历年 星期四秋天。因此,一年的第一周总是 包含1月4日。因此,ISO周年编号略有不同 在1月1日前后有几天偏离公历。
以下示例代码从2016年12月18日开始,生成60个日期的序列,并添加适当的列。
它添加:
下面的示例代码:
# Generate Some Dates
dft1 = pd.DataFrame(pd.date_range('2016-12-18', freq='D', periods=60))
dft1.columns = ['e_FullDate']
dft1['e_FullDateWeekDay'] = dft1.e_FullDate.dt.day_name().str.slice(0,3)
#Add a Week Start Date (Monday)
dft1['e_week_start'] = dft1['e_FullDate'] - pd.to_timedelta(dft1['e_FullDate'].dt.weekday,
unit='D')
dft1['e_week_startWeekDay'] = dft1.e_week_start.dt.day_name().str.slice(0,3)
#Add a Week Start Year
dft1['e_week_start_yr'] = dft1.e_week_start.dt.year
#Add a Week Number of Week Start Monday
dft1['e_week_no'] = dft1['e_week_start'].dt.week
#Add a Week Start generate from Week Number and Year
dft1['e_week_start_from_week_no'] = pd.to_datetime(dft1.e_week_no.astype(str)+
dft1.e_week_start_yr.astype(str).add('-1') ,format='%W%Y-%w')
dft1['e_week_start_from_week_noWeekDay'] = dft1.e_week_start_from_week_no.dt.day_name().str.slice(0,3)
with pd.option_context('display.max_rows', 999, 'display.max_columns', 0, 'display.max_colwidth', 9999):
display(dft1)