nltk.TweetTokenizer
中的Tokenize()返回32位整数,将它们分成数字。它只发生在一些特定的数字上,我没有看到任何理由?
>>> from nltk.tokenize import TweetTokenizer
>>> tw = TweetTokenizer()
>>> tw.tokenize('the 23135851162 of 3151942776...')
[u'the', u'2313585116', u'2', u'of', u'3151942776', u'...']
输入23135851162
已分为[u'2313585116', u'2']
有趣的是,它似乎将所有数字分成10位
>>> tw.tokenize('the 231358511621231245 of 3151942776...')
[u'the', u'2313585116', u'2123124', u'5', u'of', u'3151942776', u'...']
>>> tw.tokenize('the 231123123358511621231245 of 3151942776...')
[u'the', u'2311231233', u'5851162123', u'1245', u'of', u'3151942776', u'...']
数字标记的长度会影响标记化:
>>> s = 'the 1234567890 of'
>>> tw.tokenize(s)
[u'the', u'12345678', u'90', u'of']
>>> s = 'the 123456789 of'
>>> tw.tokenize(s)
[u'the', u'12345678', u'9', u'of']
>>> s = 'the 12345678 of'
>>> tw.tokenize(s)
[u'the', u'12345678', u'of']
>>> s = 'the 1234567 of'
>>> tw.tokenize(s)
[u'the', u'1234567', u'of']
>>> s = 'the 123456 of'
>>> tw.tokenize(s)
[u'the', u'123456', u'of']
>>> s = 'the 12345 of'
>>> tw.tokenize(s)
[u'the', u'12345', u'of']
>>> s = 'the 1234 of'
>>> tw.tokenize(s)
[u'the', u'1234', u'of']
>>> s = 'the 123 of'
>>> tw.tokenize(s)
[u'the', u'123', u'of']
>>> s = 'the 12 of'
>>> tw.tokenize(s)
[u'the', u'12', u'of']
>>> s = 'the 1 of'
>>> tw.tokenize(s)
[u'the', u'1', u'of']
如果连续数字+空格超出长度10:
>>> s = 'the 123 456 78901234 of'
>>> tw.tokenize(s)
[u'the', u'123 456 7890', u'1234', u'of']
答案 0 :(得分:5)
这似乎是TweetTokenizer()
的一个错误/特征,我们不确定这是什么动机。
继续阅读以找出错误/功能发生的位置......
在TweetTokenizer中查看tokenize()
函数,在实际标记化之前,标记生成器会进行一些预处理:
首先,它通过_replace_html_entities()
函数
可选地,它使用remove_handles()
函数删除用户名句柄。
可选择通过reduce_lengthening函数标准化单词长度
然后,使用HANG_RE
正则表达式
最后,实际的标记化通过WORD_RE
正则表达式
WORD_RE
正则表达式之后
代码:
def tokenize(self, text):
"""
:param text: str
:rtype: list(str)
:return: a tokenized list of strings; concatenating this list returns\
the original string if `preserve_case=False`
"""
# Fix HTML character entities:
text = _replace_html_entities(text)
# Remove username handles
if self.strip_handles:
text = remove_handles(text)
# Normalize word lengthening
if self.reduce_len:
text = reduce_lengthening(text)
# Shorten problematic sequences of characters
safe_text = HANG_RE.sub(r'\1\1\1', text)
# Tokenize:
words = WORD_RE.findall(safe_text)
# Possibly alter the case, but avoid changing emoticons like :D into :d:
if not self.preserve_case:
words = list(map((lambda x : x if EMOTICON_RE.search(x) else
x.lower()), words))
return words
默认情况下,除非用户指定,否则句柄剥离和长度缩减不会启动。
class TweetTokenizer:
r"""
Tokenizer for tweets.
>>> from nltk.tokenize import TweetTokenizer
>>> tknzr = TweetTokenizer()
>>> s0 = "This is a cooool #dummysmiley: :-) :-P <3 and some arrows < > -> <--"
>>> tknzr.tokenize(s0)
['This', 'is', 'a', 'cooool', '#dummysmiley', ':', ':-)', ':-P', '<3', 'and', 'some', 'arrows', '<', '>', '->', '<--']
Examples using `strip_handles` and `reduce_len parameters`:
>>> tknzr = TweetTokenizer(strip_handles=True, reduce_len=True)
>>> s1 = '@remy: This is waaaaayyyy too much for you!!!!!!'
>>> tknzr.tokenize(s1)
[':', 'This', 'is', 'waaayyy', 'too', 'much', 'for', 'you', '!', '!', '!']
"""
def __init__(self, preserve_case=True, reduce_len=False, strip_handles=False):
self.preserve_case = preserve_case
self.reduce_len = reduce_len
self.strip_handles = strip_handles
让我们来看看步骤和正则表达式:
>>> from nltk.tokenize.casual import _replace_html_entities
>>> s = 'the 231358523423423421162 of 3151942776...'
>>> _replace_html_entities(s)
u'the 231358523423423421162 of 3151942776...'
已检查,_replace_html_entities()
不是罪魁祸首。
默认情况下会跳过remove_handles()
和reduce_lengthening()
但为了理智,让我们看看:
>>> from nltk.tokenize.casual import _replace_html_entities
>>> s = 'the 231358523423423421162 of 3151942776...'
>>> _replace_html_entities(s)
u'the 231358523423423421162 of 3151942776...'
>>> from nltk.tokenize.casual import remove_handles, reduce_lengthening
>>> remove_handles(_replace_html_entities(s))
u'the 231358523423423421162 of 3151942776...'
>>> reduce_lengthening(remove_handles(_replace_html_entities(s)))
u'the 231358523423423421162 of 3151942776...'
检查过,两个可选功能都没有表现不佳
>>> import re
>>> s = 'the 231358523423423421162 of 3151942776...'
>>> HANG_RE = re.compile(r'([^a-zA-Z0-9])\1{3,}')
>>> HANG_RE.sub(r'\1\1\1', s)
'the 231358523423423421162 of 3151942776...'
<强> KLAR! HANG_RE
也被清除了名称
>>> import re
>>> from nltk.tokenize.casual import REGEXPS
>>> WORD_RE = re.compile(r"""(%s)""" % "|".join(REGEXPS), re.VERBOSE | re.I | re.UNICODE)
>>> WORD_RE.findall(s)
['the', '2313585234', '2342342116', '2', 'of', '3151942776', '...']
<强> Achso!这就是分裂出现的地方!
现在让我们深入了解WORD_RE
,这是一个正则表达式的元组。
第一个是来自https://gist.github.com/winzig/8894715
的大量网址格式正则表达式让我们逐一介绍它们:
>>> from nltk.tokenize.casual import REGEXPS
>>> patt = re.compile(r"""(%s)""" % "|".join(REGEXPS), re.VERBOSE | re.I | re.UNICODE)
>>> s = 'the 231358523423423421162 of 3151942776...'
>>> patt.findall(s)
['the', '2313585234', '2342342116', '2', 'of', '3151942776', '...']
>>> patt = re.compile(r"""(%s)""" % "|".join(REGEXPS[:1]), re.VERBOSE | re.I | re.UNICODE)
>>> patt.findall(s)
[]
>>> patt = re.compile(r"""(%s)""" % "|".join(REGEXPS[:2]), re.VERBOSE | re.I | re.UNICODE)
>>> patt.findall(s)
['2313585234', '2342342116', '3151942776']
>>> patt = re.compile(r"""(%s)""" % "|".join(REGEXPS[1:2]), re.VERBOSE | re.I | re.UNICODE)
>>> patt.findall(s)
['2313585234', '2342342116', '3151942776']
啊哈!好像来自REGEXPS
的第二个正则表达式引起了问题!!
如果我们查看https://github.com/alvations/nltk/blob/develop/nltk/tokenize/casual.py#L122:
# The components of the tokenizer:
REGEXPS = (
URLS,
# Phone numbers:
r"""
(?:
(?: # (international)
\+?[01]
[\-\s.]*
)?
(?: # (area code)
[\(]?
\d{3}
[\-\s.\)]*
)?
\d{3} # exchange
[\-\s.]*
\d{4} # base
)"""
,
# ASCII Emoticons
EMOTICONS
,
# HTML tags:
r"""<[^>\s]+>"""
,
# ASCII Arrows
r"""[\-]+>|<[\-]+"""
,
# Twitter username:
r"""(?:@[\w_]+)"""
,
# Twitter hashtags:
r"""(?:\#+[\w_]+[\w\'_\-]*[\w_]+)"""
,
# email addresses
r"""[\w.+-]+@[\w-]+\.(?:[\w-]\.?)+[\w-]"""
,
# Remaining word types:
r"""
(?:[^\W\d_](?:[^\W\d_]|['\-_])+[^\W\d_]) # Words with apostrophes or dashes.
|
(?:[+\-]?\d+[,/.:-]\d+[+\-]?) # Numbers, including fractions, decimals.
|
(?:[\w_]+) # Words without apostrophes or dashes.
|
(?:\.(?:\s*\.){1,}) # Ellipsis dots.
|
(?:\S) # Everything else that isn't whitespace.
"""
)
来自REGEXP的第二个正则表达式试图将数字解析为电话号码:
# Phone numbers:
r"""
(?:
(?: # (international)
\+?[01]
[\-\s.]*
)?
(?: # (area code)
[\(]?
\d{3}
[\-\s.\)]*
)?
\d{3} # exchange
[\-\s.]*
\d{4} # base
)"""
模式尝试识别
有关详细说明,请参阅https://regex101.com/r/BQpnsg/1。
这就是为什么它试图将连续的数字分成10位数块!!
但请注意这个怪癖,因为电话号码正则表达式是硬编码的,所以可以用\d{3}-d{3}-\d{4}
或\d{10}
模式捕捉真实的电话号码,但如果破折号按其他顺序排列,则不会起作用:
>>> from nltk.tokenize.casual import REGEXPS
>>> patt = re.compile(r"""(%s)""" % "|".join(REGEXPS[1:2]), re.VERBOSE | re.I | re.UNICODE)
>>> s = '231-358-523423423421162'
>>> patt.findall(s)
['231-358-5234', '2342342116']
>>> s = '2313-58-523423423421162'
>>> patt.findall(s)
['5234234234']
我们可以解决吗?
答案 1 :(得分:1)
TweetTokenizer
正则表达式的一部分可以识别每种可以想象的格式的电话号码(在本文档中搜索 #Phone numbers::http://www.nltk.org/_modules/nltk/tokenize/casual.html#TweetTokenizer)。一些10位数字看起来像是10位数的电话号码。这就是为什么他们被转换成单独的代币。