我的pyspark
脚本工作正常。该脚本将从mysql获取数据并创建配置表。
pyspark
脚本位于下方。
#!/usr/bin/env python
import sys
from pyspark import SparkContext, SparkConf
from pyspark.sql import HiveContext
conf = SparkConf()
sc = SparkContext(conf=conf)
sqlContext = HiveContext(sc)
#Condition to specify exact number of arguments in the spark-submit command line
if len(sys.argv) != 8:
print "Invalid number of args......"
print "Usage: spark-submit import.py Arguments"
exit()
table = sys.argv[1]
hivedb = sys.argv[2]
domain = sys.argv[3]
port=sys.argv[4]
mysqldb=sys.argv[5]
username=sys.argv[6]
password=sys.argv[7]
df = sqlContext.read.format("jdbc").option("url", "{}:{}/{}".format(domain,port,mysqldb)).option("driver", "com.mysql.jdbc.Driver").option("dbtable","{}".format(table)).option("user", "{}".format(username)).option("password", "{}".format(password)).load()
#Register dataframe as table
df.registerTempTable("mytempTable")
# create hive table from temp table:
sqlContext.sql("create table {}.{} as select * from mytempTable".format(hivedb,table))
sc.stop()
现在使用pyspark
脚本调用此shell
脚本。对于这个shell脚本,我将表名作为参数传递给文件。
shell script
在下面。
#!/bin/bash
source /home/$USER/spark/source.sh
[ $# -ne 1 ] && { echo "Usage : $0 table ";exit 1; }
args_file=$1
TIMESTAMP=`date "+%Y-%m-%d"`
touch /home/$USER/logs/${TIMESTAMP}.success_log
touch /home/$USER/logs/${TIMESTAMP}.fail_log
success_logs=/home/$USER/logs/${TIMESTAMP}.success_log
failed_logs=/home/$USER/logs/${TIMESTAMP}.fail_log
#Function to get the status of the job creation
function log_status
{
status=$1
message=$2
if [ "$status" -ne 0 ]; then
echo "`date +\"%Y-%m-%d %H:%M:%S\"` [ERROR] $message [Status] $status : failed" | tee -a "${failed_logs}"
#echo "Please find the attached log file for more details"
exit 1
else
echo "`date +\"%Y-%m-%d %H:%M:%S\"` [INFO] $message [Status] $status : success" | tee -a "${success_logs}"
fi
}
# For sql_spark.py
spark-submit --name "${table}" --master "yarn-client" --num-executors 2 --executor-memory 6g --executor-cores 1 --conf "spark.yarn.executor.memoryOverhead=609" /home/$USER/spark/sql_spark.py ${table} ${hivedb} ${domain} ${port} ${mysqldb} ${username} ${password} > /tmp/logging/${table}.log 2>&1
g_STATUS=$?
log_status $g_STATUS "Spark job ${table} Execution"
echo "************************************************************************************************************************************************************************"
现在我在mysql中有超过200个表。因此,我必须使用spark-submit 200次从mysql到hive获取表。
每次使用spark-submit时,都需要10-12秒才能创建sparkcontext。因此,有效地使用了33分钟的时间来创建sparkcontext。
我想通过只使用一个sparkcontext来减少这段时间。
现在我想要做的是我只想使用一个spark Context并将所有200个表从mysql导入到hive。
我在脚本中使用function
创建了total code
。我尝试过如下。我可以使用单个sparkContext
来达到我的要求,但不确定它是否是正确的方法。
New spark script
#!/usr/bin/env python
import sys
from pyspark import SparkContext, SparkConf
from pyspark.sql import HiveContext
conf = SparkConf()
sc = SparkContext(conf=conf)
sqlContext = HiveContext(sc)
#Condition to specify exact number of arguments in the spark-submit command line
if len(sys.argv) != 8:
print "Invalid number of args......"
print "Usage: spark-submit import.py Arguments"
exit()
args_file = sys.argv[1]
hivedb = sys.argv[2]
domain = sys.argv[3]
port=sys.argv[4]
mysqldb=sys.argv[5]
username=sys.argv[6]
password=sys.argv[7]
def testing(table, hivedb, domain, port, mysqldb, username, password):
print "*********************************************************table = {} ***************************".format(table)
df = sqlContext.read.format("jdbc").option("url", "{}:{}/{}".format(domain,port,mysqldb)).option("driver", "com.mysql.jdbc.Driver").option("dbtable","{}".format(table)).option("user", "{}".format(username)).option("password", "{}".format(password)).load()
#Register dataframe as table
df.registerTempTable("mytempTable")
# create hive table from temp table:
sqlContext.sql("create table {}.{} stored as parquet as select * from mytempTable".format(hivedb,table))
input = sc.textFile('/user/XXXXXXX/spark_args/%s' %args_file).collect()
for table in input:
testing(table, hivedb, domain, port, mysqldb, username, password)
sc.stop()
任何人都可以建议是否有其他选择,或者我正在做的事情是完全错误的。