我有以下数据:
+-----+----+-----+
|event|t |type |
+-----+----+-----+
| A |20 | 1 |
| A |40 | 1 |
| B |10 | 1 |
| B |20 | 1 |
| B |120 | 1 |
| B |140 | 1 |
| B |320 | 1 |
| B |340 | 1 |
| B |360 | 7 |
| B |380 | 1 |
+-----+-----+----+
我想要的是这样的事情:
+-----+----+----+
|event|t |grp |
+-----+----+----+
| A |20 |1 |
| A |40 |1 |
| B |10 |2 |
| B |20 |2 |
| B |120 |3 |
| B |140 |3 |
| B |320 |4 |
| B |340 |4 |
| B |380 |5 |
+-----+----+----+
规则:
我可以通过this thread的回答实现第一条规则:
代码:
val windowSpec= Window.partitionBy("event").orderBy("t")
val newSession = (coalesce(
($"t" - lag($"t", 1).over(windowSpec)),
lit(0)
) > 50).cast("bigint")
val sessionized = df.withColumn("session", sum(newSession).over(userWindow))
我必须说我无法弄清楚它是如何工作的,并且不知道如何修改它以便规则2也有效...... 希望有人能给我一些有用的提示。
我尝试了什么:
val newSession = (coalesce(
($"t" - lag($"t", 1).over(windowSpec)),
lit(0)
) > 50 || lead($"type",1).over(windowSpec) =!= 7 ).cast("bigint")
但只发生了一次错误:"必须遵循方法;无法关注org.apache.spark.sql.Column val grp = (coalesce(
答案 0 :(得分:2)
这应该可以解决问题:
val newSession = (coalesce(
($"t" - lag($"t", 1).over(win)),
lit(0)
) > 50
or $"type"===7) // also start new group in this case
.cast("bigint")
df.withColumn("session", sum(newSession).over(win))
.where($"type"=!=7) // remove these rows
.orderBy($"event",$"t")
.show
给出:
+-----+---+----+-------+
|event| t|type|session|
+-----+---+----+-------+
| A| 20| 1| 0|
| A| 40| 1| 0|
| B| 10| 1| 0|
| B| 20| 1| 0|
| B|120| 1| 1|
| B|140| 1| 1|
| B|320| 1| 2|
| B|340| 1| 2|
| B|380| 1| 3|
+-----+---+----+-------+