我们说我的数据框看起来像这样:
+---+-----------+-----------+
| id| address1| address2|
+---+-----------+-----------+
| 1|address 1.1|address 1.2|
| 2|address 2.1|address 2.2|
+---+-----------+-----------+
我想将自定义函数直接应用于 address1 和 address2 列中的字符串,例如:
def example(string1, string2):
name_1 = string1.lower().split(' ')
name_2 = string2.lower().split(' ')
intersection_count = len(set(name_1) & set(name_2))
return intersection_count
我想将结果存储在一个新列中,以便我的最终数据框如下所示:
+---+-----------+-----------+------+
| id| address1| address2|result|
+---+-----------+-----------+------+
| 1|address 1.1|address 1.2| 2|
| 2|address 2.1|address 2.2| 7|
+---+-----------+-----------+------+
我试图以我曾经将内置函数应用到整个列的方式执行它,但是我收到了一个错误:
>>> df.withColumn('result', example(df.address1, df.address2))
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 2, in example
TypeError: 'Column' object is not callable
我做错了什么以及如何将自定义函数应用于所选列中的字符串?
答案 0 :(得分:2)
你必须在spark
中使用udf(用户定义的函数)from __future__ import division
import numpy as np
import pandas as pd
import datetime
import pandas_market_calendars as mcal
from pandas_datareader import data as web
from datetime import date
'''
Full date range:
'''
startrange = datetime.date(2016, 1, 1)
endrange = datetime.date(2016, 12, 31)
'''
Tradable dates in the year:
'''
nyse = mcal.get_calendar('NYSE')
available = nyse.valid_days(start_date='2016-01-01', end_date='2016-12-31')
'''
The loop that needs to take first and last trading date of each month:
'''
dict1 = {}
for i in available:
start = datetime.date('''first available trade day of the month''')
end = datetime.date('''last available trade day of the month''')
diffdays = ((end - start).days)/365
dict1 [i] = diffdays
print (dict1)