我已经运行了我的脚本超过5个小时了。我有258个CSV文件,我想转换为TF记录。我写了下面的脚本,正如我所说,我已经运行了超过5个小时了:
import argparse
import os
import sys
import standardize_data
import tensorflow as tf
FLAGS = None
PATH = '/home/darth/GitHub Projects/gru_svm/dataset/train'
def _int64_feature(value):
return tf.train.Feature(int64_list=tf.train.Int64List(value=[value]))
def _float_feature(value):
return tf.train.Feature(float_list=tf.train.FloatList(value=[value]))
def convert_to(dataset, name):
"""Converts a dataset to tfrecords"""
filename_queue = tf.train.string_input_producer(dataset)
# TF reader
reader = tf.TextLineReader()
# default values, in case of empty columns
record_defaults = [[0.0] for x in range(24)]
key, value = reader.read(filename_queue)
duration, service, src_bytes, dest_bytes, count, same_srv_rate, \
serror_rate, srv_serror_rate, dst_host_count, dst_host_srv_count, \
dst_host_same_src_port_rate, dst_host_serror_rate, dst_host_srv_serror_rate, \
flag, ids_detection, malware_detection, ashula_detection, label, src_ip_add, \
src_port_num, dst_ip_add, dst_port_num, start_time, protocol = \
tf.decode_csv(value, record_defaults=record_defaults)
features = tf.stack([duration, service, src_bytes, dest_bytes, count, same_srv_rate,
serror_rate, srv_serror_rate, dst_host_count, dst_host_srv_count,
dst_host_same_src_port_rate, dst_host_serror_rate, dst_host_srv_serror_rate,
flag, ids_detection, malware_detection, ashula_detection, src_ip_add,
src_port_num, dst_ip_add, dst_port_num, start_time, protocol])
filename = os.path.join(FLAGS.directory, name + '.tfrecords')
print('Writing {}'.format(filename))
writer = tf.python_io.TFRecordWriter(filename)
with tf.Session() as sess:
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
try:
while not coord.should_stop():
example, l = sess.run([features, label])
print('Writing {dataset} : {example}, {label}'.format(dataset=sess.run(key),
example=example, label=l))
example_to_write = tf.train.Example(features=tf.train.Features(feature={
'duration' : _float_feature(example[0]),
'service' : _int64_feature(int(example[1])),
'src_bytes' : _float_feature(example[2]),
'dest_bytes' : _float_feature(example[3]),
'count' : _float_feature(example[4]),
'same_srv_rate' : _float_feature(example[5]),
'serror_rate' : _float_feature(example[6]),
'srv_serror_rate' : _float_feature(example[7]),
'dst_host_count' : _float_feature(example[8]),
'dst_host_srv_count' : _float_feature(example[9]),
'dst_host_same_src_port_rate' : _float_feature(example[10]),
'dst_host_serror_rate' : _float_feature(example[11]),
'dst_host_srv_serror_rate' : _float_feature(example[12]),
'flag' : _int64_feature(int(example[13])),
'ids_detection' : _int64_feature(int(example[14])),
'malware_detection' : _int64_feature(int(example[15])),
'ashula_detection' : _int64_feature(int(example[16])),
'label' : _int64_feature(int(l)),
'src_ip_add' : _float_feature(example[17]),
'src_port_num' : _float_feature(example[18]),
'dst_ip_add' : _float_feature(example[19]),
'dst_port_num' : _float_feature(example[20]),
'start_time' : _float_feature(example[21]),
'protocol' : _int64_feature(int(example[22])),
}))
writer.write(example_to_write.SerializeToString())
writer.close()
except tf.errors.OutOfRangeError:
print('Done converting -- EOF reached.')
finally:
coord.request_stop()
coord.join(threads)
def main(unused_argv):
files = standardize_data.list_files(path=PATH)
convert_to(dataset=files, name='train')
它已经让我想到也许它陷入无限循环?我想要做的是读取每个CSV文件中的所有行(258个CSV文件),并将这些行写入TF记录(功能和标签,当然)。然后,当没有可用的行或CSV文件已经用完时停止循环。
standardize_data.list_files(path)
是我在不同模块中编写的函数。我只是将它重新用于这个脚本。它的作用是返回PATH
中找到的所有文件的列表。请注意,PATH
中的文件只包含CSV文件。
答案 0 :(得分:1)
在num_epochs=1
中设置string_input_producer
。另一个注意事项:将这些csv
转换为tfrecords可能无法提供您在tfrecords中查看的任何优势,这种数据(具有大量单个功能/标签)的开销非常高。您可能想要试验这部分。