Pandas,按计数分组并将计数添加到原始数据框中?

时间:2017-07-27 09:42:03

标签: pandas dataframe

尝试计算类似'种类的行时在数据框中:

New Folder

此代码有效:

import pandas as pd

items = [('aaa','aaa text 1'), ('aaa','aaa text 2'), ('aaa','aaa text 3'),
         ('bb', 'bb text 1'), ('bb', 'bb text 2'), ('bb', 'bb text 3'), 
         ('bb', 'bb text 4'),
         ('cccc','cccc text 1'), ('cccc','cccc text 2'),
         ('dd', 'dd text 1'),
         ('e', 'e text 1'),
         ('fff', 'fff text 1'),
        ]

df = pd.DataFrame(items, columns=['kind', 'msg'])
df

    kind    msg
0   aaa     aaa text 1
1   aaa     aaa text 2
2   aaa     aaa text 3
3   bb      bb text 1
4   bb      bb text 2
5   bb      bb text 3
6   bb      bb text 4
7   cccc    cccc text 1
8   cccc    cccc text 2
9   dd      dd text 1
10  e       e text 1
11  fff     fff text 1

导致:

df = df[['kind']].groupby(['kind'])['kind'] \
                         .count() \
                         .reset_index(name='count') \
                         .sort_values(['count'], ascending=False) \
                         .head(5)

df

然而,如何才能获得一个包含所有列的数据框,如同原始列一样,加上' count'柱?因此,结果应该包含' kind',' msg',' count'按此顺序?

另外,如何按计数的降序对结果数据框进行排序?

2 个答案:

答案 0 :(得分:7)

IIUC

In [247]: df['count'] = df.groupby('kind').transform('count')

In [248]: df
Out[248]:
    kind          msg  count
0    aaa   aaa text 1      3
1    aaa   aaa text 2      3
2    aaa   aaa text 3      3
3     bb    bb text 1      4
4     bb    bb text 2      4
5     bb    bb text 3      4
6     bb    bb text 4      4
7   cccc  cccc text 1      2
8   cccc  cccc text 2      2
9     dd    dd text 1      1
10     e     e text 1      1
11   fff   fff text 1      1

分选

In [249]: df.sort_values('count', ascending=False)
Out[249]:
    kind          msg  count
3     bb    bb text 1      4
4     bb    bb text 2      4
5     bb    bb text 3      4
6     bb    bb text 4      4
0    aaa   aaa text 1      3
1    aaa   aaa text 2      3
2    aaa   aaa text 3      3
7   cccc  cccc text 1      2
8   cccc  cccc text 2      2
9     dd    dd text 1      1
10     e     e text 1      1
11   fff   fff text 1      1

答案 1 :(得分:3)

这是计算频率并在数据帧中添加一列的简单代码。

df['count'] = df.groupby('kind')['Kind'].transform('count')