我使用的是R 3.3.2。
我想根据前几年的分数预测各种分类机构的分数。然后我需要将这些预测分数作为新行添加到原始数据帧。我的输入是一个csv文件
我想使用最小二乘线性模型,发现" lm"和"预测"完全符合我的需要。
我知道这是一个非常初学的问题,但希望有人可以帮助我。请参阅下面的数据和代码,我已经开始使用两种解决方案。
score<-c(63.6, 60.3, 60.4, 53.4, 46.5, 65.8, 45.8, 65.9,
44.9, 60, 83.5, 81.7, 81.2, 78.8, 83.3, 79.4, 83.2, 77.3,
79.4)
year<-c(2013, 2014, 2015, 2016, 2014, 2014, 2015, 2015,
2016, 2016, 2011, 2012, 2013, 2014, 2014, 2015, 2015,
2016, 2016)
institution<-c(1422, 1422, 1422, 1422, 1384, 1422, 1384,
1422, 1384, 1422, 1384, 1384, 1384, 1422, 1384, 1422,
1384, 1422, 1384)
subranking<-c('CMP', 'CMP', 'CMP', 'CMP', 'SSC', 'SSC', 'SSC',
'SSC', 'SSC', 'SSC', 'ETC', 'ETC', 'ETC', 'ETC', 'ETC', 'ETC',
'ETC', 'ETC', 'ETC')
d <- data.frame(score, year, institution,subranking)
#-----------SOLUTION 1 -------------------
p<- unique(d$institution)
for (i in (1:length(p))){
x<- d$score[d$institution==p[i]]
y<- d$year[d$institution==p[i]]
model<- lm(x~y)
result<-predict(model, data.frame(y = c(2017,2018,2019,2020)))
z<- cbind(result,data.frame(y = c(2017,2018,2019,2020)))
print(z)
}
##----------SOLUTION 2 -------------------
calculate_predicted_scores <- function(scores, years) {predicted_scores <-0
mod = lm(scores ~ years)
predicted_scores<-predict(mod, data.frame(years = c(2017,2018,2019,2020)))
return(predicted_scores)
}
为了说明这一点,我想在最后得到 - 黄色行是预测:
答案 0 :(得分:2)
您可以按照这个非常有用的answer
中的说明尝试使用扫帚进行dplyrlibrary(dplyr)
library(broom)
pred_per_group = d %>% group_by(subranking, institution) %>%
do(predicted_scores=predict(lm(score ~ year, data=.), data.frame(year = c(2017,2018,2019, 2020))))
pred_df = tidy(pred_per_group, predicted_scores)
然后,使用rbind
将带有谓词的结果数据框添加到您的。
pred_df <- data.frame(score=pred_df$x, year=rep(c(2017,2018,2019,2020), 5), institution=pred_df$institution, subranking=pred_df$subranking)
result <- rbind(d, pred_df)
8月3日编辑:因为你想结束自己对编码的追求,我会按如下方式进行:
p<- unique(d$institution)
r <- unique(d$subranking)
for (i in (1:length(p))){
for(j in seq_along(r)){
score<- d$score[d$institution==p[i] & d$subranking==r[j]]
year<- d$year[d$institution==p[i] & d$subranking==r[j]]
if(length(score)== 0){
print(sprintf("No level for the following combination: Institution: %s and Subrank: %s", p[i], r[j]))
} else{
model<- lm(score~year)
result<-predict(model, data.frame(year = c(2017,2018,2019,2020)))
z<- cbind(result,data.frame(year = c(2017,2018,2019,2020)))
print(sprintf("For Institution: %s and Subrank: %s the Score is:",p[i], r[j]))
print(z)
}
}
}
给
[1] "For Institution: 1422 and Subrank: CMP the Score is:"
result year
1 51.80 2017
2 48.75 2018
3 45.70 2019
4 42.65 2020
[1] "For Institution: 1422 and Subrank: SSC the Score is:"
result year
1 58.1 2017
2 55.2 2018
3 52.3 2019
4 49.4 2020
[1] "For Institution: 1422 and Subrank: ETC the Score is:"
result year
1 77.00 2017
2 76.25 2018
3 75.50 2019
4 74.75 2020
[1] "No level for the following combination: Institution: 1384 and Subrank: CMP"
[1] "For Institution: 1384 and Subrank: SSC the Score is:"
result year
1 44.13333 2017
2 43.33333 2018
3 42.53333 2019
4 41.73333 2020
[1] "For Institution: 1384 and Subrank: ETC the Score is:"
result year
1 80.66000 2017
2 80.26286 2018
3 79.86571 2019
4 79.46857 2020