vatCodeList是字符串代码的错误。示例:[' 34u' ,' 23' ' TT'] 需要在那里设置所选值。
<select class="custom-select" formControlName="vatCode">
<option *ngFor="let i of vatCodeList">{{i}}</option>
</select>
答案 0 :(得分:1)
在*.component.ts
public vatCode: any;
在*.component.ts
内,您可以将vatCode
的值设置为vatCodeList
中包含的值之一,这将更新所选值。
在*.component.html
<select class="custom-select" formControlName="vatCode" [(ngModel)]="vatCode">
<option *ngFor="let i of vatCodeList">{{i}}</option>
</select>
答案 1 :(得分:0)
您可以像这样绑定值属性
from keras.applications.inception_v3 import InceptionV3, preprocess_input
from keras.preprocessing import image
from keras.models import Model
from keras.models import model_from_json
from keras.layers.core import Flatten
from sklearn.preprocessing import LabelEncoder
import numpy as np
import glob
import cv2
import h5py
import os
import json
import cPickle
import datetime
with open('conf/conf.json') as f:
config = json.load(f)
model_name = config["model"]
weights = config["weights"]
include_top = config["include_top"]
train_path = config["train_path"]
features_path = config["features_path"]
labels_path = config["labels_path"]
test_size = config["test_size"]
results = config["results"]
model_path = config["model_path"]
base_model = InceptionV3(weights=weights)
model = Model(input=base_model.input, output=base_model.output)
image_size = (299, 299)
print "[INFO] successfully loaded base model and model..."
train_labels = os.listdir(train_path)
print("[INFO] encoding labels...")
le = LabelEncoder()
le.fit([tl for tl in train_labels])
features = []
labels = []
for i, label in enumerate(train_labels):
cur_path = train_path + "/" + label
label = "human"
for image_path in glob.glob(cur_path + "/*.jpg"):
img = image.load_img(image_path, target_size=image_size)
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
feature = model.predict(x)s
flat = feature.flatten()
features.append(flat)
labels.append(label)
print "[INFO] processed - {}".format(i)
print "[INFO] completed label - {}".format(label)
targetNames = np.unique(labels)
le = LabelEncoder()
le_labels = le.fit_transform(labels)
print "[STATUS] training labels: {}".format(le_labels)
print "[STATUS] training labels shape: {}".format(le_labels.shape)
h5f_data = h5py.File(features_path, 'w')
h5f_data.create_dataset('dataset_1', data=np.array(features))
h5f_label = h5py.File(labels_path, 'w')
h5f_label.create_dataset('dataset_1', data=np.array(le_labels))
h5f_data.close()
h5f_label.close()
model_json = model.to_json()
with open(model_path + str(test_size) + ".json", "w") as json_file:
json_file.write(model_json)
model.save_weights(model_path + str(test_size) + ".h5")
print("[STATUS] saved model and weights to disk..")
print "[STATUS] features and labels saved.."
答案 2 :(得分:0)
您可以尝试将表达式放入选项标记以创建选项selected
<select class="custom-select" formControlName="vatCode">
<option *ngFor="let i of vatCodeList" {{i == vatCode?'selected':'' }}>{{i}}</option>
</select>
变量应该引用InputControl
的值。使用反应形式可以很容易地提取值并将其表达。
使用ngModel
将元素绑定到模型的最简单方法,但您可以检查this解决方案是否有帮助。