我有一个名为X_train的NP数组具有以下属性:
X_train.shape = (139,)
X_train[0].shape = (210, 224, 3)
X_train[1].shape = (220,180, 3)
换句话说,有139个观察结果。每个图像都有不同的宽度和高度,但它们都有3个通道。所以维度应该是(139, None, None, 3)
,其中None = variable。
由于您没有在图层中包含观察数量的维度,因此对于Conv2D图层,我使用了input_shape=(None,None,3)
。但这给了我错误:
预期conv2d_1_input有4个维度,但是有阵列形状 (139,1)
我的猜测是问题是输入形状是(139,)
而不是(139, None, None, 3)
。我不知道如何转换为那个。
答案 0 :(得分:3)
您的问题的一个可能的解决方案是用零填充数组,以便它们都具有相似的大小。之后,您的输入形状将类似于(139, max_x_dimension, max_y_dimension, 3)
。
以下功能可以完成这项工作:
import numpy as np
def fillwithzeros(inputarray, outputshape):
"""
Fills input array with dtype 'object' so that all arrays have the same shape as 'outputshape'
inputarray: input numpy array
outputshape: max dimensions in inputarray (obtained with the function 'findmaxshape')
output: inputarray filled with zeros
"""
length = len(inputarray)
output = np.zeros((length,)+outputshape, dtype=np.uint8)
for i in range(length):
output[i][:inputarray[i].shape[0],:inputarray[i].shape[1],:] = inputarray[i]
return output
def findmaxshape(inputarray):
"""
Finds maximum x and y in an inputarray with dtype 'object' and 3 dimensions
inputarray: input numpy array
output: detected maximum shape
"""
max_x, max_y, max_z = 0, 0, 0
for array in inputarray:
x, y, z = array.shape
if x > max_x:
max_x = x
if y > max_y:
max_y = y
if z > max_z:
max_z = z
return(max_x, max_y, max_z)
#Create random data similar to your data
random_data1 = np.random.randint(0,255, 210*224*3).reshape((210, 224, 3))
random_data2 = np.random.randint(0,255, 220*180*3).reshape((220, 180, 3))
X_train = np.array([random_data1, random_data2])
#Convert X_train so that all images have the same shape
new_shape = findmaxshape(X_train)
new_X_train = fillwithzeros(X_train, new_shape)