在使用TFLearn创建卷积神经网络时,如何解决混淆矩阵时遇到问题。我到目前为止的代码如下:
from __future__ import division, print_function, absolute_import
import tflearn
from tflearn.layers.core import input_data, dropout, fully_connected
from tflearn.layers.conv import conv_2d, max_pool_2d
from tflearn.layers.normalization import local_response_normalization
from tflearn.layers.estimator import regression
from sklearn.metrics import confusion_matrix
import h5py
hdf5Test = h5py.File('/path', 'r')
X = hdf5Test['X']
Y = hdf5Test['Y']
# Building convolutional network
network = input_data(shape=[None, 240, 320, 3], name='input')
network = conv_2d(network, 32, 3, activation='relu', regularizer="L2")
network = max_pool_2d(network, 2)
network = local_response_normalization(network)
network = conv_2d(network, 64, 3, activation='relu', regularizer="L2")
network = max_pool_2d(network, 2)
network = local_response_normalization(network)
network = fully_connected(network, 128, activation='tanh')
network = dropout(network, 0.8)
network = fully_connected(network, 256, activation='tanh')
network = dropout(network, 0.8)
network = fully_connected(network, 2, activation='softmax')
network = regression(
network,
optimizer='sgd',
learning_rate=0.01,
loss='categorical_crossentropy',
name='target'
)
# Training
model = tflearn.DNN(network, tensorboard_verbose=0)
model.load('/path.tflearn')
predictions = model.predict(X)
print(confusion_matrix(Y, predictions))
每次我尝试运行此代码时,都会收到以下错误消息:
在抛出' std :: bad_alloc'的实例后终止调用 what():std :: bad_alloc 中止(核心倾销)
对TFLearn来说,任何建议都会很棒。
答案 0 :(得分:1)
最后,它发现这是由于我试图预测的数据大小。我通过在循环中插入它来解决这个问题:
# Predict Classes
predictions = []
count = 0
length = len(X)
for line in X:
print('Line ' + str(count) + ' of ' + str(length))
tmp = model.predict_label([line])
predictions.append(tmp[0])
count += 1
通过一些格式化,我可以使用Sklearn生成混淆矩阵:
predictedClasses = np.argmin(predictions, axis=1)
actualClasses = np.argmax(Y, axis=1)
print(confusion_matrix(actualClasses, predictedClasses))
这种方法对我有用,可能对你有用......我认为TFLearn应该考虑采用简化的方法来制作混淆矩阵,以便其他人不会遇到同样的问题。