在TensorFlow的新输入管道功能集中,可以使用" group_by_window"组合记录组。功能。它在这里的文档中描述:
https://www.tensorflow.org/api_docs/python/tf/contrib/data/Dataset#group_by_window
我不完全理解用于描述该功能的解释,我倾向于通过示例学习。我无法在互联网上的任何地方找到此功能的任何示例代码。有人可以鞭打一个准系统和这个功能的可运行的例子,以显示它是如何工作的,以及给这个功能提供什么?
答案 0 :(得分:9)
对于tensorflow版本1.9.0 以下是我可以提出的一个简单示例:
import tensorflow as tf
import numpy as np
components = np.arange(100).astype(np.int64)
dataset = tf.data.Dataset.from_tensor_slices(components)
dataset = dataset.apply(tf.contrib.data.group_by_window(key_func=lambda x: x%2, reduce_func=lambda _, els: els.batch(10), window_size=100)
iterator = dataset.make_one_shot_iterator()
features = iterator.get_next()
sess = tf.Session()
sess.run(features) # array([ 0, 2, 4, 6, 8, 10, 12, 14, 16, 18], dtype=int64)
第一个参数key_func
将数据集中的每个元素映射到一个键。
window_size
定义了为reduce_fund
提供的存储区大小。
在reduce_func
中,您收到了window_size
个元素块。您可以根据需要随意播放,批量或填充。
使用group_by_window功能编辑动态填充和分组more here:
如果你有tf.contrib.dataset
持有(sequence, sequence_length, label)
且序列是tf.int64的张量:
def bucketing_fn(sequence_length, buckets):
"""Given a sequence_length returns a bucket id"""
t = tf.clip_by_value(buckets, 0, sequence_length)
return tf.argmax(t)
def reduc_fn(key, elements, window_size):
"""Receives `window_size` elements"""
return elements.shuffle(window_size, seed=0)
# Create buckets from 0 to 500 with an increment of 15 -> [0, 15, 30, ... , 500]
buckets = [tf.constant(num, dtype=tf.int64) for num in range(0, 500, 15)
window_size = 1000
# Bucketing
dataset = dataset.group_by_window(
lambda x, y, z: bucketing_fn(x, buckets),
lambda key, x: reduc_fn(key, x, window_size), window_size)
# You could pad it in the reduc_func, but I'll do it here for clarity
# The last element of the dataset is the dynamic sentences. By giving it tf.Dimension(None) it will pad the sencentences (with 0) according to the longest sentence.
dataset = dataset.padded_batch(batch_size, padded_shapes=(
tf.TensorShape([]), tf.TensorShape([]), tf.Dimension(None)))
dataset = dataset.repeat(num_epochs)
iterator = dataset.make_one_shot_iterator()
features = iterator.get_next()
答案 1 :(得分:2)
我找到了TensorFlow的测试代码,其中包含了该函数的一些用法,但它并不是特别适合初学者使用。