二维numpy.take快?

时间:2017-07-24 21:09:52

标签: python performance numpy take

numpy.take可以 2维

一起使用
np.take(np.take(T,ix,axis=0), iy,axis=1 )

我测试了离散二维拉普拉斯算子的模板

ΔT = T[ix-1,iy] + T[ix+1, iy] + T[ix,iy-1] + T[ix,iy+1] - 4 * T[ix,iy]

有2个采取方案和通常的numpy.array方案。引入函数p和q用于更精简的代码编写并以不同的顺序对轴0和1进行寻址。这是代码:

nx = 300; ny= 300
T  = np.arange(nx*ny).reshape(nx, ny)
ix = np.linspace(1,nx-2,nx-2,dtype=int) 
iy = np.linspace(1,ny-2,ny-2,dtype=int)
#------------------------------------------------------------
def p(Φ,kx,ky):
    return np.take(np.take(Φ,ky,axis=1), kx,axis=0 )
#------------------------------------------------------------
def q(Φ,kx,ky):
    return np.take(np.take(Φ,kx,axis=0), ky,axis=1 )
#------------------------------------------------------------
%timeit ΔT_n = T[0:nx-2,1:ny-1] + T[2:nx,1:ny-1] + T[1:nx-1,0:ny-2]  + T[1:nx-1,2:ny] - 4.0 * T[1:nx-1,1:ny-1] 
%timeit ΔT_t = p(T,ix-1,iy)  + p(T,ix+1,iy)  + p(T,ix,iy-1)  + p(T,ix,iy+1)  - 4.0 * p(T,ix,iy)
%timeit ΔT_t = q(T,ix-1,iy)  + q(T,ix+1,iy)  + q(T,ix,iy-1)  + q(T,ix,iy+1)  - 4.0 * q(T,ix,iy)
.
1000 loops, best of 3: 944 µs per loop
100 loops, best of 3: 3.11 ms per loop
100 loops, best of 3: 2.02 ms per loop

结果似乎很明显:

  1. 通常numpy index arithmeitk最快
  2. take-scheme q需要100%的时间(= C-ordering?)
  3. take-scheme p需要200%的时间(= Fortran-ordering?)
  4. 甚至不是 1维 example of the scipy manual表示numpy.take很快:

    a = np.array([4, 3, 5, 7, 6, 8])
    indices = [0, 1, 4]
    %timeit np.take(a, indices)
    %timeit a[indices]
    .
    The slowest run took 6.58 times longer than the fastest. This could mean that an intermediate result is being cached.
    100000 loops, best of 3: 4.32 µs per loop
    The slowest run took 7.34 times longer than the fastest. This could mean that an intermediate result is being cached.
    100000 loops, best of 3: 3.87 µs per loop
    

    有没有人有过如何快速制作numpy.take的经验?对于精简代码编写而言,这将是一种灵活而有吸引力的编码方式,并且编码速度快 is told to be fast in execution也是如此。感谢您提供一些改进我的方法的提示!

2 个答案:

答案 0 :(得分:2)

索引版本可能会被切片对象清理,如下所示:

T[0:nx-2,1:ny-1] + T[2:nx,1:ny-1] + T[1:nx-1,0:ny-2]  + T[1:nx-1,2:ny] - 4.0 * T[1:nx-1,1:ny-1]

sy1 = slice(1,ny-1)
sx1 = slice(1,nx-1)
sy2 = slice(2,ny)
sy_2 = slice(0,ny-2)
T[0:nx-2,sy1] + T[2:nx,sy1] + T[sx1,xy_2]  + T[sx1,sy2] - 4.0 * T[sx1,sy1]

答案 1 :(得分:1)

谢谢@Divakar和@hpaulj!是的,使用slice也是可行的。比较所有4种方法给出:

  1. 最快的时间:t(usual np)和t(slice
  2. t(take)= 2 * t(slice
  3. t(ix_)= 3 * t(slice
  4. 这里是代码和结果:

    import numpy as np
    from numpy import ix_ as r
    nx = 500;    ny = 500
    T = np.arange(nx*ny).reshape(nx, ny)
    
    ix = np.arange(1,nx-1); 
    iy = np.arange(1,ny-1);
    
    jx = slice(1,nx-1); jxm = slice(0,nx-2); jxp = slice(2,nx)
    jy = slice(1,ny-1); jym = slice(0,ny-2); jyp = slice(2,ny)
    
    #------------------------------------------------------------
    def p(U,kx,ky):
        return np.take(np.take(U,kx, axis=0), ky,axis=1)
    #------------------------------------------------------------
    
    %timeit ΔT_slice= -T[jxm,jy]     + T[jxp,jy]     - T[jx,jym]     + T[jx,jyp]     - 0.0 * T[jx,jy]
    %timeit ΔT_npy  = -T[0:nx-2,1:ny-1] + T[2:nx,1:ny-1] - T[1:nx-1,0:ny-2]  + T[1:nx-1,2:ny] - 0.0 * T[1:nx-1,1:ny-1]
    %timeit ΔT_take = -p(T,ix-1,iy)  + p(T,ix+1,iy)  - p(T,ix,iy-1)  + p(T,ix,iy+1)  - 0.0 * p(T,ix,iy)
    %timeit ΔT_ix_  = -T[r(ix-1,iy)] + T[r(ix+1,iy)] - T[r(ix,iy-1)] + T[r(ix,iy+1)] - 0.0 * T[r(ix,iy)]
    .
    100 loops, best of 3: 3.14 ms per loop
    100 loops, best of 3: 3.13 ms per loop
    100 loops, best of 3: 7.03 ms per loop
    100 loops, best of 3: 9.58 ms per loop
    

    关于有关观看和复制的讨论,以下内容可能具有指导意义:

    print("if False --> a view ;   if True --> a copy"  )
    print("_slice_ :", T[jx,jy].base is None)
    print("_npy_   :", T[1:nx-1,1:ny-1].base is None)
    print("_take_  :", p(T,ix,iy).base is None)
    print("_ix_    :", T[r(ix,iy)].base is None)
    .
    if False --> a view ;   if True --> a copy
    _slice_ : False
    _npy_   : False
    _take_  : True
    _ix_    : True