我想知道下面的惯用方法是什么。 我有N个慢速API查询和一个数据库连接,我希望有一个缓冲通道,响应将来,以及一个数据库事务,我将用它来写入数据。 我只能拿出信号量的东西作为下面的化妆例子:
func myFunc(){
//10 concurrent API calls
sem := make(chan bool, 10)
//A concurrent safe map as buffer
var myMap MyConcurrentMap
for i:=0;i<N;i++{
sem<-true
go func(i int){
defer func(){<-sem}()
resp:=slowAPICall(fmt.Sprintf("http://slow-api.me?%d",i))
myMap.Put(resp)
}(i)
}
for j=0;j<cap(sem);j++{
sem<-true
}
tx,_ := db.Begin()
for data:=range myMap{
tx.Exec("Insert data into database")
}
tx.Commit()
}
我几乎可以肯定有更简单,更清洁,更合适的解决方案,但对我而言似乎很难掌握。
编辑:
好吧,我带来了以下解决方案,这样我就不需要缓冲区映射了,所以一旦数据进入resp
通道打印数据或者可以用来插入数据库,它就可以了,我还是不行确定如果一切正常,最后没有比赛。
package main
import (
"fmt"
"math/rand"
"sync"
"time"
)
//Gloab waitGroup
var wg sync.WaitGroup
func init() {
//just for fun sake, make rand seeded
rand.Seed(time.Now().UnixNano())
}
//Emulate a slow API call
func verySlowAPI(id int) int {
n := rand.Intn(5)
time.Sleep(time.Duration(n) * time.Second)
return n
}
func main() {
//Amount of tasks
N := 100
//Concurrency level
concur := 10
//Channel for tasks
tasks := make(chan int, N)
//Channel for responses
resp := make(chan int, 10)
//10 concurrent groutinezs
wg.Add(concur)
for i := 1; i <= concur; i++ {
go worker(tasks, resp)
}
//Add tasks
for i := 0; i < N; i++ {
tasks <- i
}
//Collect data from goroutiens
for i := 0; i < N; i++ {
fmt.Printf("%d\n", <-resp)
}
//close the tasks channel
close(tasks)
//wait till finish
wg.Wait()
}
func worker(task chan int, resp chan<- int) {
defer wg.Done()
for {
task, ok := <-task
if !ok {
return
}
n := verySlowAPI(task)
resp <- n
}
}
答案 0 :(得分:2)
没有必要使用信道作为信号量,sync.WaitGroup用于等待一组例程完成。
如果您正在使用该频道限制吞吐量,那么您最好使用工作池,并使用该频道将作业传递给工作人员:
type job struct {
i int
}
func myFunc(N int) {
// Adjust as needed for total number of tasks
work := make(chan job, 10)
// res being whatever type slowAPICall returns
results := make(chan res, 10)
resBuff := make([]res, 0, N)
wg := new(sync.WaitGroup)
// 10 concurrent API calls
for i = 0; i < 10; i++ {
wg.Add(1)
go func() {
for j := range work {
resp := slowAPICall(fmt.Sprintf("http://slow-api.me?%d", j.i))
results <- resp
}
wg.Done()
}()
}
go func() {
for r := range results {
resBuff = append(resBuff, r)
}
}
for i = 0; i < N; i++ {
work <- job{i}
}
close(work)
wg.Wait()
close(results)
}
答案 1 :(得分:1)
也许这对你有用。现在你可以摆脱你的并发地图了。这是一段代码:
func myFunc() {
//10 concurrent API calls
sem := make(chan bool, 10)
respCh := make(chan YOUR_RESP_TYPE, 10)
var responses []YOUR_RESP_TYPE
for i := 0; i < N; i++ {
sem <- true
go func(i int) {
defer func() {
<-sem
}()
resp := slowAPICall(fmt.Sprintf("http://slow-api.me?%d",i))
respCh <- resp
}(i)
}
respCollected := make(chan struct{})
go func() {
for i := 0; i < N; i++ {
responses = append(responses, <-respCh)
}
close(respCollected)
}()
<-respCollected
tx,_ := db.Begin()
for _, data := range responses {
tx.Exec("Insert data into database")
}
tx.Commit()
}
我们需要再使用一个goroutine来收集某些切片中的所有响应或从响应通道收集地图。