我正在玩一些文本分析,并尝试使用逆文档频率(数值)显示每本书的顶部单词。我一直在跟随TidyText采矿,但使用哈利波特。
一些书籍之间的顶级单词(使用IDF)是相同的(例如Lupin或Griphook),并且在绘图时,顺序使用该单词的最大IDF。例如,griphook是Sorcerer's Stone和Deathly Hallows中的关键词。它在死亡圣器中的值为.0007但仅为0.0002,但是被命名为巫师之石的最高值。
hp.plot <- hp.words %>%
arrange(desc(tf_idf)) %>%
mutate(word = factor(word, levels = rev(unique(word))))
##For correct ordering of books
hp.plot$book <- factor(hp.plot$book, levels = c('Sorcerer\'s Stone', 'Chamber of Secrets',
'Prisoner of Azkhaban', 'Goblet of Fire',
'Order of the Phoenix', 'Half-Blood Prince',
'Deathly Hallows'))
hp.plot %>%
group_by(book) %>%
top_n(10) %>%
ungroup %>%
ggplot(aes(x=word, y=tf_idf, fill = book, group = book)) +
geom_col(show.legend = FALSE) +
labs(x = NULL, y = "tf-idf") +
facet_wrap(~book, scales = "free") +
coord_flip()
here's数据框的图像供您参考。
我之前尝试过排序,但这似乎不起作用。有什么想法吗?
修改:CSV is here
答案 0 :(得分:2)
reorder()
函数会按指定变量重新排序因子(请参阅?reorder
)。
在绘图前的最后一个块中mutate(word = reorder(word, tf_idf))
之后插入ungroup()
应按tf_idf
重新排序。我没有您的数据样本,但使用janeaustenr
包,这也是一样的:
library(tidytext)
library(janeaustenr)
library(dplyr)
book_words <- austen_books() %>%
unnest_tokens(word, text) %>%
count(book, word, sort = TRUE) %>%
ungroup()
total_words <- book_words %>%
group_by(book) %>%
summarize(total = sum(n))
book_words <- left_join(book_words, total_words)
book_words <- book_words %>%
bind_tf_idf(word, book, n)
library(ggplot2)
book_words %>%
group_by(book) %>%
top_n(10) %>%
ungroup() %>%
mutate(word = reorder(word, tf_idf)) %>%
ggplot(aes(x = word, y = tf_idf, fill = book, group = book)) +
geom_col(show.legend = FALSE) +
labs(x = NULL, y = "tf-idf") +
facet_wrap(~book, scales = "free") +
coord_flip()
答案 1 :(得分:1)
之前已经回答了一个问题,但我并不熟悉ggplot的术语。它在下面的SO帖子中回答。
答案 2 :(得分:0)
如果您想手动更改因子级别的顺序,可以尝试:
word = factor(word, levels = word[c(grep("griphook", word)[1], grep("quirrell", word)[1], ...)]);
如果要通过tf_idf订购因子水平,您可以使用以下内容:
level_ordered =rep(0, l)
for (i in 0: (l-1))
{
level_ordered = c(level_ordered, grep(as.character((sort(tf_idf, partial=l-i)[l-i])), tf_idf)[1])
}
word = factor(word, levels=word[level_ordered])