我有darkflow的张量流图,我在Android设备上运行推理(在CPU Snapdragon 820上)。我找到了this图形转换工具来优化部署模型。所以我优化了我的图表,预计会比以前更快,但它会慢大约10%。
导致这种情况的原因是什么?我究竟做错了什么?
以下是详细信息:
$ ./flow --model cfg / tiny-yolo-voc.cfg --load bin / tiny-yolo-voc.weights --savepb --verbalise
$ bazel-bin / tensorflow / tools / graph_transforms / transform_graph /
--iningraph = .. / darkflow / darkflow / built_graph / tiny-yolo-voc.pb /
--out_graph =。 ./darkflow/darkflow/built_graph/optimized-tiny-yolo-voc.pb /
--inputs ='输入' --outputs ='输出' /
--transforms =' strip_unused_nodes(type = float,shape =" 1,299,299,3")fold_constants(ignore_errors = true)fold_batch_norms fold_old_batch_norms'
InfrerenceRunner.java:
public class InferenceRunner {
private static final String INPUT_NODE = "input";
private static final String OUTPUT_NODE = "output";
protected final TensorFlowInferenceInterface mInferenceInterface;
private final int mGridSize;
private final int mNumOfLabels;
private int mInputSize;
public InferenceRunner(Context context, String modelFile, int inputSize, int gridSize, int numOfLabels) {
this.mInputSize = inputSize;
this.mGridSize = gridSize;
this.mNumOfLabels = numOfLabels;
mInferenceInterface = new TensorFlowInferenceInterface(context.getAssets(), modelFile);
}
public synchronized void runInference(Bitmap image) {
Trace.beginSection("imageTransform");
Bitmap bitmap = Bitmap.createScaledBitmap(image, mInputSize, mInputSize, false);
int[] intValues = new int[mInputSize * mInputSize];
float[] floatValues = new float[mInputSize * mInputSize * 3];
bitmap.getPixels(intValues, 0, bitmap.getWidth(), 0, 0, bitmap.getWidth(), bitmap.getHeight());
for (int i = 0; i < intValues.length; ++i) {
floatValues[i * 3 + 0] = ((intValues[i] >> 16) & 0xFF) / 255.0f;
floatValues[i * 3 + 1] = ((intValues[i] >> 8) & 0xFF) / 255.0f;
floatValues[i * 3 + 2] = (intValues[i] & 0xFF) / 255.0f;
}
Trace.endSection();
Trace.beginSection("inferenceFeed");
mInferenceInterface.feed(INPUT_NODE, floatValues, 1, mInputSize, mInputSize, 3);
Trace.endSection();
Trace.beginSection("inferenceRun");
mInferenceInterface.run(new String[]{OUTPUT_NODE});
Trace.endSection();
final float[] resu =
new float[mGridSize * mGridSize * (mNumOfLabels + 5) * 5];
Trace.beginSection("inferenceFetch");
mInferenceInterface.fetch(OUTPUT_NODE, resu);
Trace.endSection();
}
}
MainActivity:onCreate():
...
tinyYolo = new InferenceRunner(getApplicationContext(), TINY_YOLO_MODEL_FILE, TINY_YOLO_INPUT_SIZE, 13, 20);
optimizedTinyYolo = new InferenceRunner(getApplicationContext(), OPTIMIZED_TINY_YOLO_MODEL_FILE, TINY_YOLO_INPUT_SIZE, 13, 20);
...
MainActivity:的onResume():
...
mHandler.post(new Runnable() {
@Override
public void run() {
Trace.beginSection("TinyYoloModel");
for (int i = 0; i < 5; i++) {
tinyYolo.runInference(b);
}
Trace.endSection();
Log.d(TAG, "run: optimized");
Trace.beginSection("OptimizedModel");
for (int i = 0; i < 5; i++) {
optimizedTinyYolo.runInference(b);
}
Trace.endSection();
}
});
...
TinyYoloModel墙的持续时间为5,525ms
OptimizedModel持续时间为6,043ms
TinyYoloModel inferenceRun avg:1051ms
OptimizedModel inferenceRun avg:1158ms
您是否知道为什么优化模型会变慢?
如果您需要更多信息,请随时发表评论! 谢谢你的帮助。