熊猫从列表的字典中创建一个df

时间:2017-07-24 01:09:47

标签: python pandas

我是一个动态填充的数据结构,因此密钥和子密钥的数量是未知的。我想把它转换成Pandas df。结构看起来像这样

    datastore = {
    "user1":{
        "time1":[1,2,3,4], 
        "time2":[5,6,7,8], 
        "time3":[1,2,3,4] },
    "user2":{ 
        "time1":[1,2,3,4], 
        "time2":[5,6,7,8] }
}

带有值列表的dicts的词典

我想把它转换成像这样的pandas

index users times x y z k
0     user1 time1 1 2 3 4
1     user1 time2 5 6 7 8
2     user1 time3 1 2 3 4
3     user2 time1 1 2 3 4
4     user2 time2 5 6 7 8 
....

我已尝试过pd.DataFrame(dict),from_dict方法,但无法使其正常工作。任何帮助将不胜感激。

编辑:抱歉语法错误,已修复

2 个答案:

答案 0 :(得分:2)

这是一种方法

datastore = {
"user1":{
    "time1":[1,2,3,4], 
    "time2":[5,6,7,8], 
    "time3":[1,2,3,4] },
"user2":{ 
    "time1":[1,2,3,4], 
    "time2":[5,6,7,8]}
}

我们可以使用pd.DataFrame()和dict然后stack()然后reset_index()它

df = pd.DataFrame(datastore).stack().reset_index()
print(df)
  level_0 level_1             0
0   time1   user1  [1, 2, 3, 4]
1   time1   user2  [1, 2, 3, 4]
2   time2   user1  [5, 6, 7, 8]
3   time2   user2  [5, 6, 7, 8]
4   time3   user1  [1, 2, 3, 4]

现在我们分开'在0中的列表,应用pd.Series,然后将其加入到level_1和level_2。一些列重命名,我们已完成

df = df[['level_1', 'level_0']].join(df[0].apply(pd.Series))
df.columns = ['users', 'times', 'x', 'y', 'z', 'k']
print(df)
   users  times  x  y  z  k
0  user1  time1  1  2  3  4
1  user2  time1  1  2  3  4
2  user1  time2  5  6  7  8
3  user2  time2  5  6  7  8
4  user1  time3  1  2  3  4

答案 1 :(得分:2)

选项1

pd.DataFrame.from_dict(datastore, 'index').stack() \
    .rename_axis(['users', 'times']) \
    .apply(pd.Series, index=list('xyzk')).reset_index()

   users  times  x  y  z  k
0  user1  time1  1  2  3  4
1  user1  time2  5  6  7  8
2  user1  time3  1  2  3  4
3  user2  time1  1  2  3  4
4  user2  time2  5  6  7  8

选项2

pd.DataFrame(
    [[u, t] + l for u, td in datastore.items() for t, l in td.items()],
    columns='users times x y z k'.split()
)

   users  times  x  y  z  k
0  user1  time1  1  2  3  4
1  user1  time2  5  6  7  8
2  user1  time3  1  2  3  4
3  user2  time1  1  2  3  4
4  user2  time2  5  6  7  8

计时

%timeit pd.DataFrame.from_dict(datastore, 'index').stack().rename_axis(['users', 'times']).apply(pd.Series, index=list('xyzk')).reset_index()
%timeit pd.DataFrame([[u, t] + l for u, td in datastore.items() for t, l in td.items()], columns='users timets x y z k'.split())

100 loops, best of 3: 2.72 ms per loop
1000 loops, best of 3: 556 µs per loop

<强> DEBUG
如果您复制并粘贴此代码......它应该运行。请尝试并报告它确实已经运行。

import pandas as pd

datastore = {
    "user1":{
        "time1":[1,2,3,4], 
        "time2":[5,6,7,8], 
        "time3":[1,2,3,4] },
    "user2":{ 
        "time1":[1,2,3,4], 
        "time2":[5,6,7,8]}
}

pd.DataFrame.from_dict(datastore, 'index').stack() \
    .rename_axis(['users', 'times']) \
    .apply(pd.Series, index=list('xyzk')).reset_index()