我的问题是准备好用ses预测的数据。我有一组带有我从Excel导入的时间戳的票证数据(~25,000个条目):
Number Created Category Priority `Incident state` `Reassignment count` Urgency Impact
<dbl> <dttm> <chr> <chr> <chr> <dbl> <chr> <chr>
1 1 2014-07-01 19:16:00 Software/System 5 - Minor Closed 0 3 - Low 3 - Low
2 2 2014-07-02 15:27:00 Software/System 5 - Minor Closed 0 3 - Low 3 - Low
3 3 2014-07-02 15:27:00 Software/System 5 - Minor Closed 0 3 - Low 3 - Low
4 4 2014-07-02 15:27:00 Software/System 5 - Minor Closed 0 3 - Low 3 - Low
5 5 2014-07-02 15:28:00 Software/System 5 - Minor Closed 0 3 - Low 3 - Low
6 6 2014-07-02 15:29:00 Software/System 5 - Minor Closed 0 3 - Low 3 - Low
由于在工作时间之外没有票据被提出,所以数据没有定期间隔,因此我无法指定seq()。在转换为我可以预测的时间序列之前,我需要将Created列子集化为每小时块。我尝试将Created列四舍五入到几个小时:
modelling_messy$Created <- as.POSIXct(modelling_messy$Created,format="%Y/%m/%d %H:%M:%S", tz = "GMT")
modelling_messy$Created <- as.POSIXct(round(modelling_messy$Created, units = "hours"))
这使得我的数据看起来像我想要的方式,并允许我聚合()所有条目具有相同的每小时时间戳,但是当我使用ts()
时,它会变得很笨拙# A tibble: 2 x 8
Number Created Category Priority `Incident state` `Reassignment count` Urgency Impact
<dbl> <dttm> <chr> <dbl> <chr> <dbl> <chr> <chr>
1 1 2014-07-01 19:00:00 Software/System 5 Closed 0 3 - Low 3 - Low
2 2 2014-07-02 15:00:00 Software/System 5 Closed 0 3 - Low 3 - Low
> myts <- ts(modelling_clean[,1:2], start = c(2014-07-01, 1), freq = 1)
> head(myts)
Time Series:
Start = 2006
End = 2011
Frequency = 1
Group.1 Number
2006 1404241200 1
2007 1404313200 5
2008 1404316800 1
2009 1404907200 8
2010 1404910800 28
2011 1404914400 1
我知道我以某种方式弄乱了ts(),但我找不到如何解决它!我希望时间数据保持为“%Y-%m-%d%H:00:00”或其他有用的日期/小时组合(我只是覆盖2014年至2017年)。
非常感谢任何和所有帮助。
Ta很多。
EDIT 感谢您的建议 - 我认为这将解决转换为时间序列的问题但我不确定如何获取df $的数据从我当前的Tibble创建(太多的数据来手动编码!)我尝试了以下但是犯了一个错误:
> df = data.frame(Created = modelling_messy$Created),stringsAsFactors = F)
Error: unexpected ',' in "df = data.frame(Created = modelling_messy$Created),"
> df$id = seq_along(nrow(df))
Error in df$id = seq_along(nrow(df)) :
类型'closure'的对象不是子集化的
提前致谢!
答案 0 :(得分:1)
您可以使用xts包创建每小时时间序列,如下所示:
library(xts)
# sample data
df = data.frame(Created = c("2014-07-01 19:16:00","2014-07-02 15:27:00","2014-07-02 15:27:00","2014-07-02 15:27:00",
"2014-07-02 15:28:00","2014-07-02 15:29:00"),stringsAsFactors = F)
df$id = seq_along(nrow(df))
# Round dates to hours
df$Created <- as.POSIXct(df$Created,format="%Y-%m-%d %H", tz = "GMT")
# Let's aggregate and create hourly data
df = aggregate(id ~ Created, df,length)
time_series = data.frame(Created= seq( min(df$Created), max(df$Created),by='1 hour'))
time_series = merge(time_series,df,by="Created",all.x=TRUE)
time_series$id[is.na(time_series$id)]=0
# create timeseries object
library(xts)
myxts = xts(time_series$id, order.by = time_series$Created)
输出:
[,1]
2014-07-01 19:00:00 1
2014-07-01 20:00:00 0
2014-07-01 21:00:00 0
2014-07-01 22:00:00 0
2014-07-01 23:00:00 0
2014-07-02 00:00:00 0
2014-07-02 01:00:00 0
2014-07-02 02:00:00 0
2014-07-02 03:00:00 0
2014-07-02 04:00:00 0
2014-07-02 05:00:00 0
2014-07-02 06:00:00 0
2014-07-02 07:00:00 0
2014-07-02 08:00:00 0
2014-07-02 09:00:00 0
2014-07-02 10:00:00 0
2014-07-02 11:00:00 0
2014-07-02 12:00:00 0
2014-07-02 13:00:00 0
2014-07-02 14:00:00 0
2014-07-02 15:00:00 5
它在工作!
免责声明:这是我第一次玩R中的时间序列,因此可能有其他(即更好的)方法来实现这一目标。