它表明'程序收到信号SIGSEGV:分段错误 - 无效的内存引用。 “?

时间:2017-07-23 03:29:28

标签: fortran

我正在做一个多重积分,有一个参数M_D我可以修改。 M_D=2.9d3M_D=3.1d3都可以正常工作,但当我将其更改为M_D=3.0d0时,会出现错误

Program received signal SIGSEGV: Segmentation fault - invalid memory reference.
Backtrace for this error:
#0  0x7F831A103E08
#1  0x7F831A102F90
#2  0x7F83198344AF
#3  0x43587C in __mc_vegas_MOD_vegas
#4  0x400EBE in MAIN__ at MAINqq.f90:?
Segmentation fault (core dumped)

在进展过程中,不太可能存在超出范围的sigularity。从我发现的这类问题的答案来看,我猜这不是关于数组维度的超出范围。

这次我没有简化问题来解释我的问题,以便编写更少的代码。在这里发布所有代码是不切实际的,所以我发布了我认为与错误相关的段。

module my_fxn
   implicit none   
   private
   public ::  fxn_1   
   public :: cos_theta

   real(kind(0d0)), parameter      :: S=1.690d8
   real(kind(0d0)), parameter      :: g_s = 0.118d0
   real(kind(0d0)), parameter      :: M_D = 3.0d3   !!!
   real(kind(0d0)), parameter      :: m=172d0
   real(kind(0d0)), parameter      :: Q=2d0 
   real(kind(0d0)), parameter      :: pi=3.14159d0
   real(kind(0d0)), external       :: CT14pdf
   real(kind(0d0)) :: cos_theta
   real(kind(0d0)) :: s12
   integer         :: i
   contains        
      function jacobian( upper, lower) result(jfactor)
         implicit none
         real(kind(0d0)), dimension(1:6) :: upper, lower
         real(kind(0d0))  :: jfactor

         jfactor = 1d0
         do i = 1, 6
            jfactor = jfactor * (upper(i) - lower(i))
         end do
      end function jacobian



      function dot_vec(p,q) result(fourvectordot)
         implicit none
         real(kind(0d0)) :: fourvectordot
         real(kind(0d0)), dimension(0:3) :: p,q

         fourvectordot = p(0) * q(0)
         do i = 1, 3
            fourvectordot = fourvectordot - p(i) * q(i)
         end do
      end function dot_vec



      subroutine commonpart(p3_0, p4_0, eta, k_v,P3_v, p4_v, s13, s14, s23, s24) 
         implicit none
         real(kind(0d0)), intent(in) :: p3_0, p4_0, eta, k_v, p3_v, p4_v 
         real(kind(0d0)), intent(out):: s13, s14, s23, s24
         real(kind(0d0)) :: sin_theta, &
                            cos_eta, sin_eta,   &
                            cos_ksi, sin_ksi
         real(kind(0d0)), dimension(0:3) :: k1, k2, p3, p4, k 


         sin_theta = sqrt(1-cos_theta**2) 
         cos_eta = cos(eta)
         sin_eta = sqrt(1-cos_eta**2)  
         cos_ksi = (k_v**2-p3_v**2-p4_v**2)/(2*p3_v*p4_v)
         sin_ksi = sqrt(1-cos_ksi**2)

         k1 = [sqrt(s12)/2d0,0d0,0d0, sqrt(s12)/2d0]
         k2 = [sqrt(s12)/2d0,0d0,0d0, -sqrt(s12)/2d0]
         p3 = [p3_0, p3_v*(cos_theta*cos_eta*sin_ksi+sin_theta*cos_ksi), &
               p3_v* sin_eta*sin_ksi, p3_v*( cos_theta*cos_ksi-sin_theta*cos_eta*sin_ksi)]
         p4 = [p4_0, p4_v*sin_theta, 0d0, p4_v*cos_theta]
         do i = 1, 3
         k(i)  = 0 - p3(i) - p4(i)
         end do
         k(0) = sqrt(s12) - p3_0-p4_0

         s13 = m**2- 2*dot_vec(k1,p3)
         s14 = m**2- 2*dot_vec(k1,p4)
         s23 = m**2- 2*dot_vec(k2,p3)
         s24 = m**2- 2*dot_vec(k2,p3)

      end subroutine commonpart

      function fxn_1(z, wgt) result(fxn_qq)
         implicit none 
         real(kind(0d0)), dimension(1:6) :: z      
         real(kind(0d0)) :: wgt
         real(kind(0d0)) :: tau_0
         real(kind(0d0)) :: sigma, tau, m_plus, m_minus,  &   ! intermediate var 
                            p3_v, p4_v, k_v, phi
         real(kind(0d0)) :: s13,s14,s23, s24, gm    
         real(kind(0d0)) :: part1_qq,part_qq,fxn_qq       
         real(kind(0d0)) :: p3_0_max, p4_0_max, eta_max, gm_max, x1_max, x2_max, &
                            p3_0_min, p4_0_min, eta_min, gm_min, x1_min, x2_min
         real(kind(0d0)), dimension(1:6) :: upper, lower
         real(kind(0d0)) :: jfactor

         wgt = 0

         gm_max = M_D
         gm_min = 0.1d0
         z(1)= (gm_max-gm_min)*z(1) + gm_min

         tau_0 = (2*m)**2/S

         eta_max = 2*pi
         eta_min = 0
         z(2) = (eta_max-eta_min)*z(2)+eta_min

         x1_max = 1
         x1_min = tau_0
         z(3) = (x1_max-x1_min)*z(3) + x1_min

         x2_max = 1
         x2_min = tau_0/z(3)
         z(4) = (x2_max-x2_min)*z(4)+x2_min

         s12 = z(3)*z(4) * S
         if (sqrt(s12) < (2*m+z(1)))then
            fxn_qq = 0d0 
            return
            else
         end if

         p4_0_max = sqrt(s12)/2 - ((m+z(1))**2-m**2)/(2*sqrt(s12))
         p4_0_min = m
         z(5) = (p4_0_max-p4_0_min)*z(5)+p4_0_min

         p4_v = sqrt(z(5)**2-m**2) 
         sigma = sqrt(s12)-z(5)
         tau = sigma**2 - p4_v**2
         m_plus = m + z(1)
         m_minus = m - z(1)

         p3_0_max = 1/(2*tau)*(sigma*(tau+m_plus*m_minus)+p4_v*sqrt((tau-m_plus**2)*(tau-m_minus**2)))
         p3_0_min = 1/(2*tau)*(sigma*(tau+m_plus*m_minus)-p4_v-sqrt((tau-m_plus**2)*(tau-m_minus**2)))
         z(6) = (p3_0_max-p3_0_min)*z(6)+p3_0_min

         p3_v = sqrt(z(6)**2-m**2)  
         k_v = sqrt((sqrt(s12)-z(5)-z(6))**2-z(1)**2)

         gm = z(1)

         upper = [gm_max, eta_max, x1_max, x2_max, p4_0_max, p3_0_max]
         lower = [gm_min, eta_min, x1_min, x2_min, p4_0_min, p3_0_min]
         jfactor = jacobian(upper, lower)
         call commonpart(z(6),z(5),z(2), k_v,p3_v, p4_v, s13, s14, s23, s24) 

         include "juicy.m"
         part1_qq = 0d0
         do i = 1, 5
            part1_qq = part1_qq+CT14Pdf(i, z(3), Q)*CT14Pdf(-i, z(4), Q)*part_qq 
         end do

         phi = 1/(8*(2*pi)**4) * 1/(2*s12)
         fxn_qq = jfactor * g_s**4/M_D**5*pi*z(1)**2*phi*part1_qq
      end function fxn_1
end module my_fxn

MC_VEGAS

MODULE MC_VEGAS
!*****************************************************************
!  This module is a modification f95 version of VEGA_ALPHA.for
!  by G.P. LEPAGE SEPT 1976/(REV)AUG 1979.
!*****************************************************************
IMPLICIT NONE
SAVE
INTEGER,PARAMETER                         :: MAX_SIZE=20            ! The max dimensions of the integrals
INTEGER,PRIVATE                           :: i_vegas
REAL(KIND(1d0)),DIMENSION(MAX_SIZE),PUBLIC:: XL=(/(0d0,i_vegas=1,MAX_SIZE)/),&
                                             XU=(/(1d0,i_vegas=1,MAX_SIZE)/)
INTEGER,PUBLIC                            :: NCALL=50000,&             ! The number of integrand evaluations per iteration
!+++++++++++++++++++++++++++++++++++++++++++++++++++++
! You can change NCALL to change the precision
!+++++++++++++++++++++++++++++++++++++++++++++++++++++

                                             ITMX=5,&                 ! The maximum number of iterations
                                             NPRN=5,&                 ! printed or not
                                             NDEV=6,&                 ! device number for output
                                             IT=0,&                   ! number of iterations completed
                                             NDO=1,&                  ! number of subdivisions on an axis
                                             NDMX=50,&                ! determines the maximum number of increments along each axis
                                             MDS=1                    ! =0 use importance sampling only
                                                                      ! =\0 use importance sampling and stratified sampling
                                                                      ! increments are concentrated either wehre the
                                                                      ! integrand is largest in magnitude (MDS=1), or
                                                                      ! where the contribution to the error is largest(MDS=-1)
INTEGER,PUBLIC                            :: IINIP
REAL(KIND(1d0)),PUBLIC                    :: ACC=-1d0                 ! Algorithm stops when the relative accuracy,
                                                                      ! |SD/AVGI|, is less than ACC; accuracy is not
                                                                      ! cheched when ACC<0
REAL(KIND(1d0)),PUBLIC                    :: MC_SI=0d0,&              ! sum(AVGI_i/SD_i^2,i=1,IT)
                                             SWGT=0d0,&               ! sum(1/SD_i^2,i=1,IT)
                                             SCHI=0d0,&               ! sum(AVGI_i^2/SD_i^2,i=1,IT)
                                             ALPH=1.5d0               ! controls the rate which the grid is modified from
                                                                      ! iteration to iteration; decreasing ALPH slows
                                                                      ! modification of the grid
                                                                      ! (ALPH=0 implies no modification)
REAL(KIND(1d0)),PUBLIC                    :: DSEED=1234567d0    ! seed of 
! location of the I-th division on the J-th axi, normalized to lie between 0 and 1.
REAL(KIND(1d0)),DIMENSION(50,MAX_SIZE),PUBLIC::XI=1d0
REAL(KIND(1d0)),PUBLIC                    :: CALLS,TI,TSI

CONTAINS

SUBROUTINE RANDA(NR,R)
IMPLICIT NONE
INTEGER,INTENT(IN)                        :: NR
REAL(KIND(1d0)),DIMENSION(NR),INTENT(OUT) :: R
INTEGER                                   :: I
! D2P31M=(2**31) - 1 D2P31 =(2**31)(OR AN ADJUSTED VALUE)
REAL(KIND(1d0))::D2P31M=2147483647.d0,D2P31=2147483711.d0
!FIRST EXECUTABLE STATEMENT
DO I=1,NR
   DSEED = DMOD(16807.d0*DSEED,D2P31M)
   R(I) = DSEED / D2P31
ENDDO
END SUBROUTINE RANDA

SUBROUTINE VEGAS(NDIM,FXN,AVGI,SD,CHI2A,INIT)
!***************************************************************
!     SUBROUTINE PERFORMS NDIM-DIMENSIONAL MONTE CARLO INTEG'N
!     - BY G.P. LEPAGE    SEPT 1976/(REV)AUG 1979
!     - ALGORITHM DESCRIBED IN J COMP PHYS 27,192(1978)
!***************************************************************
! Without INIT or INIT=0, CALL VEGAS
! INIT=1  CALL VEGAS1
! INIT=2  CALL VEGAS2
! INIT=3  CALL VEGAS3
!***************************************************************
IMPLICIT NONE
INTEGER,INTENT(IN)                    :: NDIM
REAL(KIND(1d0)),EXTERNAL              :: FXN
INTEGER,INTENT(IN),OPTIONAL           :: INIT
REAL(KIND(1d0)),INTENT(INOUT)         :: AVGI,SD,CHI2A
REAL(KIND(1d0)),DIMENSION(50,MAX_SIZE):: D,DI
REAL(KIND(1d0)),DIMENSION(50)         :: XIN,R
REAL(KIND(1d0)),DIMENSION(MAX_SIZE)   :: DX,X,DT,RAND
INTEGER,DIMENSION(MAX_SIZE)           :: IA,KG
INTEGER                               :: initflag
REAL(KIND(1d0)),PARAMETER             :: ONE=1.d0
INTEGER                               :: I, J, K, NPG, NG, ND, NDM, LABEL = 0
REAL(KIND(1d0))                       :: DXG, DV2G, XND, XJAC, RC, XN, DR, XO, TI2, WGT, FB, F2B, F, F2
!***************************
!SAVE AVGI,SD,CHI2A
!SQRT(A)=DSQRT(A)
!ALOG(A)=DLOG(A)
!ABS(A)=DABS(A)
!***************************
IF(PRESENT(INIT))THEN
   initflag=INIT
ELSE
   initflag=0
ENDIF
! INIT=0  - INITIALIZES CUMULATIVE VARIABLES AND GRID
ini0:IF(initflag.LT.1) THEN
   NDO=1
   DO  J=1,NDIM
       XI(1,J)=ONE
   ENDDO
ENDIF ini0
!  INIT=1    - INITIALIZES CUMULATIVE VARIABLES, BUT NOT GRID     
ini1:IF(initflag.LT.2) THEN
  IT=0
  MC_SI=0.d0
  SWGT=MC_SI
  SCHI=MC_SI
ENDIF ini1
!  INIT=2   - NO INITIALIZATION
ini2:IF(initflag.LE.2)THEN
   ND=NDMX
   NG=1
   IF(MDS.NE.0) THEN
     NG=(NCALL/2.d0)**(1.d0/NDIM)
     MDS=1
     IF((2*NG-NDMX).GE.0) THEN
       MDS=-1
       NPG=NG/NDMX+1
       ND=NG/NPG
       NG=NPG*ND
       ENDIF
   ENDIF
   K=NG**NDIM                      ! K sub volumes
   NPG=NCALL/K                     ! The number of random numbers in per sub volumes Ms
   IF(NPG.LT.2) NPG=2
   CALLS=DBLE(NPG*K)               ! The total number of random numbers M
   DXG=ONE/NG
   DV2G=(CALLS*DXG**NDIM)**2/NPG/NPG/(NPG-ONE)  ! 1/(Ms-1)
   XND=ND                          ! ~NDMX! 
                                   ! determines the number of increments along each axis
   NDM=ND-1                        ! ~NDMX-1
   DXG=DXG*XND                     ! determines the number of increments along each axis per sub-v
   XJAC=ONE/CALLS
   DO J=1,NDIM
      DX(J)=XU(J)-XL(J)
      XJAC=XJAC*DX(J)              ! XJAC=Volume/M
   ENDDO
!     REBIN, PRESERVING BIN DENSITY
   IF(ND.NE.NDO) THEN
      RC=NDO/XND                   ! XND=ND
      outer:DO J=1, NDIM           ! Set the new division
          K=0
          XN=0.d0
          DR=XN
          I=K
          LABEL=0
          inner5:DO
          IF(LABEL.EQ.0) THEN
                  inner4:DO
                    K=K+1
                    DR=DR+ONE
                    XO=XN
                    XN=XI(K,J)
                    IF(RC.LE.DR) EXIT
               ENDDO inner4
          ENDIF
             I=I+1
             DR=DR-RC
             XIN(I)=XN-(XN-XO)*DR
             IF(I.GE.NDM) THEN
                     EXIT
             ELSEIF(RC.LE.DR) THEN
                     LABEL=1
             ELSE
                     LABEL=0
             ENDIF
             ENDDO inner5
           inner:DO I=1,NDM
             XI(I,J)=XIN(I)
           ENDDO inner
           XI(ND,J)=ONE
      ENDDO outer
      NDO=ND
   ENDIF

   IF(NPRN.GE.0) WRITE(NDEV,200) NDIM,CALLS,IT,ITMX,ACC,NPRN,&
                         ALPH,MDS,ND,(XL(J),XU(J),J=1,NDIM)
ENDIF ini2
!ENTRY VEGAS3(NDIM,FXN,AVGI,SD,CHI2A)     INIT=3   - MAIN INTEGRATION LOOP
mainloop:DO
    IT=IT+1
    TI=0.d0
    TSI=TI
    DO J=1,NDIM
       KG(J)=1
       DO I=1,ND
          D(I,J)=TI
          DI(I,J)=TI
       ENDDO
       ENDDO

    LABEL=0
    level1:DO
    level2:DO
    ifla:IF(LABEL.EQ.0)THEN
           FB=0.d0
           F2B=FB
           level3:DO K=1,NPG
              CALL RANDA(NDIM,RAND)
              WGT=XJAC
              DO J=1,NDIM
                 XN=(KG(J)-RAND(J))*DXG+ONE
                 IA(J)=XN
                 IF(IA(J).LE.1) THEN
                    XO=XI(IA(J),J)
                    RC=(XN-IA(J))*XO
                 ELSE
                    XO=XI(IA(J),J)-XI(IA(J)-1,J)
                    RC=XI(IA(J)-1,J)+(XN-IA(J))*XO
            ENDIF
                 X(J)=XL(J)+RC*DX(J)
                 WGT=WGT*XO*XND
              ENDDO

              F=WGT
              F=F*FXN(X,WGT)
              F2=F*F
              FB=FB+F
              F2B=F2B+F2
              DO J=1,NDIM
                 DI(IA(J),J)=DI(IA(J),J)+F
                 IF(MDS.GE.0) D(IA(J),J)=D(IA(J),J)+F2
              ENDDO
           ENDDO level3
!          K=K-1                    !K=NPG

           F2B=DSQRT(F2B*DBLE(NPG))
           F2B=(F2B-FB)*(F2B+FB)
           TI=TI+FB
           TSI=TSI+F2B
           IF(MDS.LT.0) THEN
              DO J=1,NDIM
                D(IA(J),J)=D(IA(J),J)+F2B
              ENDDO
      ENDIF 
           K=NDIM
        ENDIF ifla
        KG(K)=MOD(KG(K),NG)+1
        IF(KG(K).EQ.1) THEN
                EXIT
        ELSE
                LABEL=0
        ENDIF
        ENDDO level2
      K=K-1
      IF(K.GT.0) THEN
              LABEL=1
      ELSE
              EXIT
      ENDIF
      ENDDO level1

!    COMPUTE FINAL RESULTS FOR THIS ITERATION
    TSI=TSI*DV2G
    TI2=TI*TI
    WGT=ONE/TSI
    MC_SI=MC_SI+TI*WGT
    SWGT=SWGT+WGT
    SCHI=SCHI+TI2*WGT
    AVGI=MC_SI/SWGT
    CHI2A=(SCHI-MC_SI*AVGI)/(IT-0.9999d0)
    SD=DSQRT(ONE/SWGT)
    IF(NPRN.GE.0) THEN
      TSI=DSQRT(TSI)
      WRITE(NDEV,201) IT,TI,TSI,AVGI,SD,CHI2A
      ENDIF
    IF(NPRN.GT.0) THEN
      DO J=1,NDIM
         WRITE(NDEV,202) J,(XI(I,J),DI(I,J),I=1+NPRN/2,ND,NPRN)
      ENDDO
      ENDIF
!*************************************************************************************
!   REFINE GRID
!   XI(k,j)=XI(k,j)-(XI(k,j)-XI(k-1,j))*(sum(R(i),i=1,k)-s*sum(R(i),i=1,ND)/M)/R(k)
!   divides the original k-th interval into s parts
!*************************************************************************************
    outer2:DO J=1,NDIM
          XO=D(1,J)
          XN=D(2,J)
          D(1,J)=(XO+XN)/2.d0
          DT(J)=D(1,J)
          inner2:DO I=2,NDM
              D(I,J)=XO+XN
              XO=XN
              XN=D(I+1,J)
              D(I,J)=(D(I,J)+XN)/3.d0
              DT(J)=DT(J)+D(I,J)
          ENDDO inner2
          D(ND,J)=(XN+XO)/2.d0
          DT(J)=DT(J)+D(ND,J)
    ENDDO outer2

    le1:DO J=1,NDIM
        RC=0.d0
        DO I=1,ND
           R(I)=0.d0
           IF(D(I,J).GT.0.) THEN
               XO=DT(J)/D(I,J)
               R(I)=((XO-ONE)/XO/DLOG(XO))**ALPH
       ENDIF
           RC=RC+R(I)
        ENDDO
        RC=RC/XND
        K=0
        XN=0.d0
        DR=XN
        I=K
        LABEL=0
        le2:DO
        le3:DO
        IF(LABEL.EQ.0)THEN
                K=K+1
                DR=DR+R(K)
                XO=XN
                XN=XI(K,J)
        ENDIF
        IF(RC.LE.DR) THEN
                EXIT
        ELSE
                LABEL=0
        ENDIF
           ENDDO le3
           I=I+1
           DR=DR-RC
           XIN(I)=XN-(XN-XO)*DR/R(K)
           IF(I.GE.NDM) THEN
                   EXIT
           ELSE
                   LABEL=1
           ENDIF 
           ENDDO le2
        DO I=1,NDM
           XI(I,J)=XIN(I)
        ENDDO
        XI(ND,J)=ONE
    ENDDO le1

    IF(IT.GE.ITMX.OR.ACC*ABS(AVGI).GE.SD) EXIT
ENDDO mainloop
200   FORMAT(/," INPUT PARAMETERS FOR MC_VEGAS: ",/," NDIM=",I3,"    NCALL=",F8.0,&
     "     IT=",I3,/," ITMX=",I3,"    ACC=   ",G9.3,&
     "   NPRN=",I3,/," ALPH=",F5.2,"    MDS=",I3,"          ND=",I4,/,&
     "(XL,XU)=",(T10,"(" G12.6,",",G12.6 ")"))
201   FORMAT(/," INTEGRATION BY MC_VEGAS ", " ITERATION NO. ",I3, /,&
     " INTEGRAL = ",G14.8, /," SQURE DEV  = ",G10.4,/,&
     " ACCUMULATED RESULTS:   INTEGRAL = ",G14.8,/,&
     " DEV  = ",G10.4, /," CHI**2 PER IT'N = ",G10.4)
! X is the division of the coordinate
! DELTA I is the sum of F in this interval 
202   FORMAT(/,"DATA FOR AXIS ",I2,/,"    X       DELTA I       ", &
     24H   X       DELTA I      ,18H   X       DELTA I, &
      /(1H ,F7.6,1X,G11.4,5X,F7.6,1X,G11.4,5X,F7.6,1X,G11.4))
END SUBROUTINE VEGAS
END MODULE MC_VEGAS

Main.f90

program main
   use my_fxn
   use MC_VEGAS 
   implicit none

   integer, parameter        :: NDIM = 6
   real(kind(0d0))           :: avgi, sd, chi2a
   Character(len=40)         :: Tablefile
   data Tablefile/'CT14LL.pds'/
   Call SetCT14(Tablefile)
   call vegas(NDIM,fxn_1,avgi,sd,chi2a)

   print *, avgi
end program main

<小时/> 运行build.sh

#!/bin/sh
rm -rf *.mod
rm -rf *.o
rm -rf ./calc
rm DATAqq.txt

gfortran -c CT14Pdf.for
gfortran -c FXNqq.f90
gfortran -c MC_VEGAS.f90
gfortran -c MAINqq.f90

gfortran  -g -fbacktrace -fcheck=all -Wall -o calc MAINqq.o CT14Pdf.o FXNqq.o MC_VEGAS.o
./calc
rm -rf *.mod
rm -rf *.o
rm -rf ./calc

整个输出没有改变

 rm: cannot remove 'DATAqq.txt': No such file or directory

 INPUT PARAMETERS FOR MC_VEGAS: 
 NDIM=  6    NCALL=  46875.     IT=  0
 ITMX=  5    ACC=   -1.00       NPRN=  5
 ALPH= 1.50    MDS=  1          ND=  50
(XL,XU)= ( 0.00000    , 1.00000    )
         ( 0.00000    , 1.00000    )
         ( 0.00000    , 1.00000    )
         ( 0.00000    , 1.00000    )
         ( 0.00000    , 1.00000    )
         ( 0.00000    , 1.00000    )

 INTEGRATION BY MC_VEGAS  ITERATION NO.   1
 INTEGRAL =            NaN
 SQURE DEV  =        NaN
 ACCUMULATED RESULTS:   INTEGRAL =            NaN
 DEV  =        NaN
 CHI**2 PER IT'N =        NaN

DATA FOR AXIS  1
    X       DELTA I          X       DELTA I         X       DELTA I
 .060000  0.2431E-14     .160000  0.5475E-15     .260000  0.8216E-14
 .360000  0.3641E-14     .460000  0.6229E-12     .560000  0.6692E-13
 .660000  0.9681E-15     .760000  0.9121E-15     .860000  0.2753E-13
 .960000 -0.9269E-16

DATA FOR AXIS  2
    X       DELTA I          X       DELTA I         X       DELTA I
 .060000  0.1658E-13     .160000  0.5011E-14     .260000  0.8006E-12
 .360000  0.1135E-14     .460000  0.9218E-13     .560000  0.7337E-15
 .660000  0.6192E-12     .760000  0.3676E-14     .860000  0.2315E-14
 .960000  0.5426E-13

DATA FOR AXIS  3
    X       DELTA I          X       DELTA I         X       DELTA I
 .060000  0.3197E-14     .160000  0.1096E-12     .260000  0.5996E-14
 .360000  0.5695E-13     .460000  0.3240E-14     .560000  0.5504E-13
 .660000  0.9276E-15     .760000  0.6193E-12     .860000  0.1151E-13
 .960000  0.7968E-17

DATA FOR AXIS  4
    X       DELTA I          X       DELTA I         X       DELTA I
 .060000  0.3605E-13     .160000  0.1656E-14     .260000  0.7266E-12
 .360000  0.2149E-13     .460000  0.8086E-13     .560000  0.9119E-14
 .660000  0.3692E-15     .760000  0.6499E-15     .860000  0.1906E-17
 .960000  0.1542E-19

DATA FOR AXIS  5
    X       DELTA I          X       DELTA I         X       DELTA I
 .060000 -0.4229E-15     .160000 -0.4056E-14     .260000 -0.1121E-14
 .360000  0.6757E-15     .460000  0.7460E-14     .560000  0.9331E-15
 .660000  0.8301E-14     .760000  0.6595E-14     .860000 -0.5203E-11
 .960000  0.6361E-12

DATA FOR AXIS  6
    X       DELTA I          X       DELTA I         X       DELTA I
 .060000  0.2111E-12     .160000  0.5410E-13     .260000  0.1418E-12
 .360000  0.1103E-13     .460000  0.8338E-14     .560000 -0.5840E-14
 .660000  0.1263E-14     .760000 -0.1501E-15     .860000  0.4647E-14
 .960000  0.3134E-15

Program received signal SIGSEGV: Segmentation fault - invalid memory reference.

Backtrace for this error:
#0  0x7F9D828B0E08
#1  0x7F9D828AFF90
#2  0x7F9D81FE24AF
#3  0x43586C in __mc_vegas_MOD_vegas
#4  0x400EAE in MAIN__ at MAINqq.f90:?
Segmentation fault (core dumped)

0 个答案:

没有答案