我在here的Python中编写了Percentron示例。
这是完整的代码
$con = mysqli_connect("localhost","root","","profiles");
$q = mysqli_query($con,"SELECT * FROM users");
if (false === $q) {
echo mysqli_error();
}else{
while($row = mysqli_fetch_assoc($q)){
echo $row['username'];
if($row['image'] == ""){
echo "<img width='100' height='100' src='pictures/default.jpg' alt='Default Profile Pic'>";
} else {
echo "<img width='100' height='100' src='pictures/".$row['image']."' alt='Profile Pic'>";
}
echo "<br>";
}
}
我希望在图表上绘制的点可以根据预期条件(x坐标> y坐标)分类为红色或蓝色,即高于或低于参考线(y = x)
这似乎不起作用,经过一些迭代后所有点都变红了。
我在这里做错了什么。同样适用于youtube示例。
答案 0 :(得分:0)
我查看了你的代码和视频,我相信你的代码编写方式,点数开始为绿色,如果他们的猜测与他们的目标匹配,他们会变成红色,如果他们的猜测与目标不符,他们会变成蓝色。当它们的猜测与目标相匹配时,其余的蓝色最终会变为红色。 (改变的重量可能会变成红色到蓝色,但最终会被纠正。)
以下是我对代码的修改,这会减慢进程:添加更多分数;每帧仅处理一个点而不是所有帧:
import random as rnd
import matplotlib.pyplot as plt
import matplotlib.animation as animation
NUM_POINTS = 100
LEARNING_RATE = 0.1
X, Y = 0, 1
fig = plt.figure() # an empty figure with no axes
ax1 = fig.add_subplot(1, 1, 1)
plt.xlim(0, 120)
plt.ylim(0, 120)
plt.plot([x for x in range(100)], [y for y in range(100)])
weights = [rnd.uniform(-1, 1), rnd.uniform(-1, 1)]
points = []
circles = []
for i in range(NUM_POINTS):
x = rnd.uniform(1, 100)
y = rnd.uniform(1, 100)
points.append((x, y))
circle = plt.Circle((x, y), radius=1, fill=False, color='g')
circles.append(circle)
ax1.add_patch(circle)
def activation(val):
if val >= 0:
return 1
return -1
def guess(point):
vsum = 0
# x and y and bias weights
vsum += point[X] * weights[X]
vsum += point[Y] * weights[Y]
return activation(vsum)
def train(point, error):
# adjust weights
weights[X] += point[X] * error * LEARNING_RATE
weights[Y] += point[Y] * error * LEARNING_RATE
point_index = 0
def animate(frame):
global point_index
point = points[point_index]
if point[X] > point[Y]:
answer = 1 # group A (X > Y)
else:
answer = -1 # group B (Y > X)
guessed = guess(point)
if answer == guessed:
circles[point_index].set_color('r')
else:
circles[point_index].set_color('b')
train(point, answer - guessed)
point_index = (point_index + 1) % NUM_POINTS
ani = animation.FuncAnimation(fig, animate, interval=100)
plt.show()
我抛弃了特殊的0,0输入修复,因为它不适用于此示例。
最重要的是,如果一切正常, 应该 全部变为红色。如果您希望颜色反映分类,则可以更改此子句:
if answer == guessed:
circles[point_index].set_color('r' if answer == 1 else 'b')
else:
circles[point_index].set_color('g')
train(point, answer - guessed)