在询问R merged loop performance问题一段时间后,我已经达到了下面的代码。
我的.csv文件长1250行,宽2500多列。列中的数据类型事先是未知的,可以是正数或字符串等。
我想要实现的是将具有95%相等项目的行留给任何其他行(2500中的2375列中的任何一列中的相等值)。
最初我试图检查相似之处,但后来我意识到通过消除而不是聚合将需要更少的计算。由于我正在寻找95%的相似性,如果一条线与数据集中的每一条线都有2500-2375 = 125 + 1个不相等的列,那么我可以确定这条线与其他线的相似性永远不会达到95%可以从进一步处理中删除。
下面的代码成功查看所有行的最左边的checkColCount(%6)列,然后删除与所有其他行(如果存在的话)不相似的行,然后移到下一个checkColCount列。 xdat(如果有)中的结果行是具有95%以上相似列的行。
问题是时间,我试图把它放到parApply中,但结果与此不同(中间有很多空行)。我假设,理想情况下我应该能够并行化以下两个应用程序。
注意:我在Windows OS上
工作代码:
xdat <- read.csv("ttt.csv", header =TRUE, stringsAsFactors = FALSE )
#Normally, I'm interested in at least 95% of the data to be **equal**
perc <- 95
#replacing NA's with unique random negative numbers to make sures that NA's don't appear as identical between rows
xdat[is.na(xdat)] <- -1 * sample(dim(xdat)[1]*dim(xdat)[2], size=sum(is.na(xdat)), replace=FALSE)
xdat<-rbind(xdat,xdat[1,])
compareRow <- function(a,b)
{
sum(a!=b,na.rm=TRUE)
}
#adding the first row to the end for testing
xdat<-rbind(xdat,xdat[1,])
system.time( try(
for (firstColToCheck in seq(1,100-(100-perc),100-perc)){
lastColToCheck <- 100-perc +1 + firstColToCheck
checkColCount <- lastColToCheck- firstColToCheck +1
xx <- apply(xdat[,firstColToCheck:lastColToCheck],1, function(a)
{
apply(xdat[,firstColToCheck:lastColToCheck],1, function(b) {compareRow(a,b) })
})
sumXX <-rowSums(xx)
checkValue <- checkColCount*(nrow(xdat)-1)
xdat<-xdat[rowSums(xx)<checkValue,]
cat(firstColToCheck , " ")
gc(verbose = FALSE)
} , silent = TRUE )
)
xdat0 <- xdat
# user system elapsed
# 5.22 0.00 5.21
我尝试了parApply:
xdat <- read.csv("ttt.csv", header =TRUE, stringsAsFactors = FALSE )
#Normally, I'm interested in at least 95% of the data to be **equal**
perc <- 95
#replacing NA's with unique random negative numbers to make sures that NA's don't appear as identical between rows
xdat[is.na(xdat)] <- -1 * sample(dim(xdat)[1]*dim(xdat)[2], size=sum(is.na(xdat)), replace=FALSE)
xdat<-rbind(xdat,xdat[1,])
library(parallel)
no_cores <- detectCores() - 1
cl1 <- makeCluster(no_cores)
clusterExport(cl1, c('compareRow','firstColToCheck','xdat','lastColToCheck','checkColCount'))
clusterEvalQ(cl1, library(parallel))
system.time( try(
for (firstColToCheck in seq(1,100-(100-perc),100-perc)){
lastColToCheck <- 100-perc +1 + firstColToCheck
checkColCount <- lastColToCheck- firstColToCheck +1
xx <- parApply(cl1,xdat[,firstColToCheck:lastColToCheck],1, function(a)
{
apply(xdat[,firstColToCheck:lastColToCheck],1, function(b) {compareRow(a,b) })
})
sumXX <-rowSums(xx)
checkValue <- checkColCount*(nrow(xdat)-1)
xdat<-xdat[rowSums(xx)<checkValue,]
cat(firstColToCheck , " ")
} , silent = TRUE )
)
stopCluster(cl1)
# user system elapsed
# 0.14 0.00 0.63
xdat1 <- xdat
示例数据:
id group hs.grad race gender age m.status political n.kids income
1 treat yes white male 19 never republican 1 4716
2 control yes black male 30 divorced independent 2 4724
3 control yes black female 32 married republican 3 1096
4 control no white male 35 divorced republican 4 1084
5 control yes white female 18 married republican 5 4720
6 control yes asian male 22 married independent 6 2577
7 control yes white female 26 never democrat 7 3154
8 control yes asian male 40 married republican 8 3267
9 control yes asian female 23 married independent 9 3603
10 treat yes white male 19 divorced republican 1 4716
示例结果假设我不需要95%但70%相等:
id group hs.grad race gender age m.status political n.kids income
1 treat yes white male 19 never republican 1 4716
10 treat yes white male 19 divorced republican 1 4716
只剩下第1行和第10行,因为它们有8列相等(超过70%)所有其他行与任何其他行相差至少4列,因此它们已从集合中删除。