我需要按逻辑列过滤表(或者更确切地说,通过它的否定),但列的名称可能会有所不同。当我事先知道他们的名字时,这很容易:
tb = tibble(
id = 1:4,
col1 = c(TRUE, TRUE, FALSE, FALSE),
col2 = c(TRUE, FALSE, TRUE, FALSE)
)
tb
## # A tibble: 4 x 3
## id col1 col2
## <int> <lgl> <lgl>
## 1 1 TRUE TRUE
## 2 2 TRUE FALSE
## 3 3 FALSE TRUE
## 4 4 FALSE FALSE
colname = quo(col1)
tb %>%
filter(!!colname) # rows where col1 is true
## # A tibble: 2 x 3
## id col1 col2
## <int> <lgl> <lgl>
## 1 1 TRUE TRUE
## 2 2 TRUE FALSE
tb %>%
filter(!(!!colname)) # rows where col1 is false
## # A tibble: 2 x 3
## id col1 col2
## <int> <lgl> <lgl>
## 1 3 FALSE TRUE
## 2 4 FALSE FALSE
colname = quo(col2)
tb %>%
filter(!!colname) # rows where col2 is true
## # A tibble: 2 x 3
## id col1 col2
## <int> <lgl> <lgl>
## 1 1 TRUE TRUE
## 2 3 FALSE TRUE
tb %>%
filter(!(!!colname)) # rows where col2 is false
## # A tibble: 2 x 3
## id col1 col2
## <int> <lgl> <lgl>
## 1 2 TRUE FALSE
## 2 4 FALSE FALSE
但是,我不能弄清楚当列名存储在字符串中时如何做同样的事情。例如:
colname = "col1"
tb %>%
filter(!!colname)
## Error in filter_impl(.data, quo): Argument 2 filter condition does not evaluate to a logical vector
colname = quo("col1")
tb %>%
filter(!!colname)
## Error in filter_impl(.data, quo): Argument 2 filter condition does not evaluate to a logical vector
colname = quo(parse(text = "col1"))
tb %>%
filter(!!colname)
## Error in filter_impl(.data, quo): Argument 2 filter condition does not evaluate to a logical vector
所以,问题是,我应该怎么做?
编辑:这不是this question的重复,因为从那时起,使用dplyr进行非标准评估的首选方式已发生变化。所有在_中终止的函数现已弃用,现在建议使用整洁的评估框架。
答案 0 :(得分:6)
我们可以使用sym
中的rlang
来评估字符串
library(rlang)
library(dplyr)
colname <- "col1"
tb %>%
filter(!!sym(colname))
# A tibble: 2 x 3
# id col1 col2
# <int> <lgl> <lgl>
#1 1 TRUE TRUE
#2 2 TRUE FALSE