我有两张桌子:
overflow: auto
和
CREATE TABLE share_prices (
price_id int(10) unsigned NOT NULL AUTO_INCREMENT,
price_date date NOT NULL,
company_id int(10) NOT NULL,
high decimal(20,2) DEFAULT NULL,
low decimal(20,2) DEFAULT NULL,
close decimal(20,2) DEFAULT NULL,
PRIMARY KEY (price_id),
UNIQUE KEY price_date (price_date,company_id),
KEY company_id (company_id),
KEY price_date_2 (price_date)
) ENGINE=InnoDB AUTO_INCREMENT=368586 DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_unicode_ci;
这是当前的查询:
CREATE TABLE rating_lookup (
rating_id int(11) NOT NULL,
start_date date DEFAULT NULL,
start_price decimal(10,2) DEFAULT NULL,
broker_id int(11) DEFAULT NULL,
company_id int(11) DEFAULT NULL,
end_date date DEFAULT NULL,
PRIMARY KEY (rating_id),
KEY idx_rating_lookup_company_id (company_id)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
目前此查询需要 10.969秒。
孤立的子查询需要 0.391秒(持续时间)/ 10.438秒(获取)
查询目标:
获取每个broker_id的正确评分总数。
正确评级定义为自start_price以来达到+ 5%的评级。
我希望大幅减少查询时间,即使重组数据库是唯一的方法。
解释上述问题:
SELECT broker_id, count(rating_id)
FROM (
SELECT rating_lookup.*,
share_prices.company_id as correct_company,
share_prices.price_date,
max(high) as peak_gain,
( ( ( max(high) - rating_lookup.start_price ) / rating_lookup.start_price ) * 100 ) as percent_gain
FROM rating_lookup, share_prices
WHERE share_prices.price_date > rating_lookup.start_date
AND share_prices.price_date < ifnull(end_date, curdate())
AND share_prices.company_id = rating_lookup.company_id
GROUP BY rating_id
HAVING percent_gain > 5
) correct
GROUP BY broker_id
+---+---------+---------------+-------+--------------------------------------+------------+---+----------------------------------------+---------+---------------------------------+
| 1 | PRIMARY | <derived2> | ALL | | | | | 3894800 | Using temporary; Using filesort |
| 2 | DERIVED | rating_lookup | index | PRIMARY,idx_rating_lookup_company_id | PRIMARY | 4 | | 18200 | Using where |
| 2 | DERIVED | share_prices | ref | price_date,company_id,price_date_2 | company_id | 4 | brokermetrics.rating_lookup.company_id | 214 | Using where |
+---+---------+---------------+-------+--------------------------------------+------------+---+----------------------------------------+---------+---------------------------------+
~375,000行
share_prices
~18,000行,约有46个独立经纪人
答案 0 :(得分:2)
我认为市场收盘后每天会插入一次股票价格(如果你覆盖多个市场,则每天插入几次)。
如果您无法充分调整查询,则可以预先计算结果。每次加载一批新股票价格后运行查询。将结果插入新表中。读取预先计算的数据应该足够快。
答案 1 :(得分:1)
PRIMARY KEY (price_id), -- useless
UNIQUE KEY price_date (price_date,company_id), -- could/should be PK
KEY company_id (company_id),
KEY price_date_2 (price_date) -- redundant
- &GT;
PRIMARY KEY(price_date, company_id),
KEY company_id (company_id)
decimal(20,2)
消耗9个字节,现有的库存不可能超过小数点左边的6位数,并且不处理需要超过两位小数的低价股票。考虑DECIMAL(8,2)
(4个字节)或(10,4)
(5个字节)。 FLOAT
(4个字节)可以避免大多数问题,但仅限于7个重要位数。
较小 - &gt;更多可缓存 - &gt;少I / O - &gt;更快。
不要选择你不需要的东西。你所需要的只是
SELECT rating_id, broker_id
并将表达式移动到HAVING:
HAVING ((( max(high)... *100) > 5
请使用JOIN..ON
语法:
FROM rating_lookup, share_prices
WHERE share_prices.company_id = rating_lookup.company_id
AND ...
- &GT;
FROM rating_lookup AS r
JOIN share_prices AS p
ON p.company_id = r.company_id
WHERE ...
答案 2 :(得分:1)
扩展Klas的回答,下面是一个“摘要”表的模式,可以使用每个经纪人预先计算的记录,每个公司,每天填充。
免责声明:尚未对真实数据进行过测试,但应该有效。
CREATE TABLE `price_summary` (
`price_id` int(10) NOT NULL,
`broker_id` int(10) NOT NULL DEFAULT '0',
`company_id` int(10) NOT NULL DEFAULT '0',
`start_date` int(10) NOT NULL DEFAULT '0',
`end_date` int(10) NOT NULL DEFAULT '0',
`peak_gain` int(10) NOT NULL DEFAULT '0',
`max_price` int(10) NOT NULL DEFAULT '0',
`percentage_gain` decimal(10,0) NOT NULL DEFAULT '0',
`updated_on` int(10) NOT NULL DEFAULT '0'
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
--
-- Indexes for dumped tables
--
--
-- Indexes for table `price_summary`
--
ALTER TABLE `price_summary`
ADD PRIMARY KEY (`price_id`),
ADD UNIQUE KEY `broker_company_date` (`broker_id`,`company_id`,`start_date`) USING BTREE,
ADD KEY `broker_id` (`broker_id`),
ADD KEY `company_id` (`company_id`),
ADD KEY `start_date` (`start_date`),
ADD KEY `end_date` (`end_date`),
ADD KEY `peak_gain` (`peak_gain`),
ADD KEY `max_price` (`max_price`),
ADD KEY `percentage_gain` (`percentage_gain`);
ALTER TABLE `price_summary`
MODIFY `price_id` int(10) NOT NULL AUTO_INCREMENT;
用于检索所需记录的示例查询。
SELECT
broker_id,
count(company_id) as company_count
FROM
price_summary
WHERE
start_date > {input_timestamp}
AND
end_date < {input_timestamp/now()}
AND
percentage_gain > {input_percentage}
GROUP BY
broker_id