我有一个有26列的excel。
Date
,Unique ID
和H01
,H02
,H03
... H24
此处H {n}表示小时,即some_code
处的UID 19/7/2017 01.00.00
,其值为199
。在19/7/2017 02.00.00
,值为7
等。
+--------------------+---------------+----------+---------------+
| Date | UID | H01 | H02 |
+--------------------+---------------+----------+---------------+
| 19/7/2017 00.00.00 | some_code | 199 | 7 |
| 19/7/2017 00.00.00 | another_code | 164 | 18 |
| 19/7/2017 00.00.00 | new_code | 209 | 1 |
| 19/7/2017 00.00.00 | code_5 | 85 | 4 |
| 19/7/2017 00.00.00 | what | 45 | 6 |
我正在阅读excel并创建一个类似于上面的DataFrame。
我想要修改此DataFrame,以便我得到以下内容。
+--------------------+---------------+----------+
| Date | UID | Value |
+--------------------+---------------+----------+
| 19/7/2017 01.00.00 | some_code | 199 |
| 19/7/2017 02.00.00 | some_code | 7 |
| 19/7/2017 03.00.00 | some_code | ... |
.................................................
.................................................
| 19/7/2017 00.00.00 | some_code | ... |
| 19/7/2017 01.00.00 | another_code | 164 |
| 19/7/2017 02.00.00 | another_code | 18 |
| 19/7/2017 03.00.00 | another_code | ...|
.................................................
.................................................
| 19/7/2017 00.00.00 | another_code | ...|
我是Python和Pandas的新手,无法理解堆栈/取消堆栈/枢轴。
答案 0 :(得分:1)
您可以使用:
Date
to_datetime
set_index
创建MultiIndex
- 所有其他列均为H
列extract
个数字并转换为to_timedelta
stack
timedeltas
的列添加到日期,并按drop
df['Date'] = pd.to_datetime(df['Date'], format='%d/%m/%Y %H.%M.%S')
df = df.set_index(['Date','UID'])
df.columns=pd.to_timedelta(df.columns.str.extract('(\d+)',expand=False).astype(int),unit='H')
df = df.stack().reset_index(name='Value')
df['Date'] = df['Date'] + df['level_2']
df = df.drop('level_2', axis=1)
print (df)
Date UID Value
0 2017-07-19 01:00:00 some_code 199
1 2017-07-19 02:00:00 some_code 7
2 2017-07-19 01:00:00 another_code 164
3 2017-07-19 02:00:00 another_code 18
4 2017-07-19 01:00:00 new_code 209
5 2017-07-19 02:00:00 new_code 1
6 2017-07-19 01:00:00 code_5 85
7 2017-07-19 02:00:00 code_5 4
8 2017-07-19 01:00:00 what 45
9 2017-07-19 02:00:00 what 6
对于相同格式的日期,请添加dt.strftime
:
...
df['Date'] = (df['Date'] + df['level_2']).dt.strftime('%d/%m/%Y %H.%M.%S')
df = df.drop('level_2', axis=1)
print (df)
Date UID Value
0 19/07/2017 01.00.00 some_code 199
1 19/07/2017 02.00.00 some_code 7
2 19/07/2017 01.00.00 another_code 164
3 19/07/2017 02.00.00 another_code 18
4 19/07/2017 01.00.00 new_code 209
5 19/07/2017 02.00.00 new_code 1
6 19/07/2017 01.00.00 code_5 85
7 19/07/2017 02.00.00 code_5 4
8 19/07/2017 01.00.00 what 45
9 19/07/2017 02.00.00 what 6