我正在努力重构SunCalc.js代码的简单使用。最初我在我的background.js
中使用了所有SunCalc代码(并且扩展工作正常),但我想将SunCalc代码放在单独的文件suncalc.js
中。
以下是新的background.js
:
import {sunModule as sunModule} from "./suncalc.js";
chrome.browserAction.onClicked.addListener(function(tab) {
alert("Running.");
// Note that this may take a second:
navigator.geolocation.getCurrentPosition(wasSuccessful, notSuccessful);
});
function wasSuccessful(position) {
alert("Here");
var theDate = new Date();
var times = SunCalc.getTimes(new Date(), position.coords.latitude, position.coords.longitude);
if ((theDate <= times.sunrise) || (times.sunset <= theDate)) {
alert("It's night.");
} else {
alert("It's day.");
};
}
function notSuccessful(err) {
alert("Not Successful.");
}
这是suncalc.js模块:
/* ---------------------------------------------------------------------------
* SunCalc
*
* SunCalc is a tiny BSD-licensed JavaScript library for calculating sun
* position, sunlight phases (times for sunrise, sunset, dusk, etc.), moon
* position and lunar phase for the given location and time, created by
* Vladimir Agafonkin (http://agafonkin.com/en, https://github.com/mourner) as
* a part of the [SunCalc.net project](http://suncalc.net).
*
* Most calculations are based on the formulas given on the site Astronomy
* Answers and Wikipedia.
* -------------------------------------------------------------------------*/
export var sunModule = (function () { 'use strict';
// shortcuts for easier to read formulas
var PI = Math.PI,
sin = Math.sin,
cos = Math.cos,
tan = Math.tan,
asin = Math.asin,
atan = Math.atan2,
acos = Math.acos,
rad = PI / 180;
// sun calculations are based on http://aa.quae.nl/en/reken/zonpositie.html formulas
// date/time constants and conversions
var dayMs = 1000 * 60 * 60 * 24,
J1970 = 2440588,
J2000 = 2451545;
function toJulian(date) { return date.valueOf() / dayMs - 0.5 + J1970; }
function fromJulian(j) { return new Date((j + 0.5 - J1970) * dayMs); }
function toDays(date) { return toJulian(date) - J2000; }
// general calculations for position
var e = rad * 23.4397; // obliquity of the Earth
function rightAscension(l, b) { return atan(sin(l) * cos(e) - tan(b) * sin(e), cos(l)); }
function declination(l, b) { return asin(sin(b) * cos(e) + cos(b) * sin(e) * sin(l)); }
function azimuth(H, phi, dec) { return atan(sin(H), cos(H) * sin(phi) - tan(dec) * cos(phi)); }
function altitude(H, phi, dec) { return asin(sin(phi) * sin(dec) + cos(phi) * cos(dec) * cos(H)); }
function siderealTime(d, lw) { return rad * (280.16 + 360.9856235 * d) - lw; }
function astroRefraction(h) {
if (h < 0) // the following formula works for positive altitudes only.
h = 0; // if h = -0.08901179 a div/0 would occur.
// formula 16.4 of "Astronomical Algorithms" 2nd edition by Jean Meeus (Willmann-Bell, Richmond) 1998.
// 1.02 / tan(h + 10.26 / (h + 5.10)) h in degrees, result in arc minutes -> converted to rad:
return 0.0002967 / Math.tan(h + 0.00312536 / (h + 0.08901179));
}
// general sun calculations
function solarMeanAnomaly(d) { return rad * (357.5291 + 0.98560028 * d); }
function eclipticLongitude(M) {
var C = rad * (1.9148 * sin(M) + 0.02 * sin(2 * M) + 0.0003 * sin(3 * M)), // equation of center
P = rad * 102.9372; // perihelion of the Earth
return M + C + P + PI;
}
function sunCoords(d) {
var M = solarMeanAnomaly(d),
L = eclipticLongitude(M);
return {
dec: declination(L, 0),
ra: rightAscension(L, 0)
};
}
var SunCalc = {};
// calculates sun position for a given date and latitude/longitude
SunCalc.getPosition = function (date, lat, lng) {
var lw = rad * -lng,
phi = rad * lat,
d = toDays(date),
c = sunCoords(d),
H = siderealTime(d, lw) - c.ra;
return {
azimuth: azimuth(H, phi, c.dec),
altitude: altitude(H, phi, c.dec)
};
};
// sun times configuration (angle, morning name, evening name)
var times = SunCalc.times = [
[-0.833, 'sunrise', 'sunset' ],
[ -0.3, 'sunriseEnd', 'sunsetStart' ],
[ -6, 'dawn', 'dusk' ],
[ -12, 'nauticalDawn', 'nauticalDusk'],
[ -18, 'nightEnd', 'night' ],
[ 6, 'goldenHourEnd', 'goldenHour' ]
];
// adds a custom time to the times config
SunCalc.addTime = function (angle, riseName, setName) {
times.push([angle, riseName, setName]);
};
// calculations for sun times
var J0 = 0.0009;
function julianCycle(d, lw) { return Math.round(d - J0 - lw / (2 * PI)); }
function approxTransit(Ht, lw, n) { return J0 + (Ht + lw) / (2 * PI) + n; }
function solarTransitJ(ds, M, L) { return J2000 + ds + 0.0053 * sin(M) - 0.0069 * sin(2 * L); }
function hourAngle(h, phi, d) { return acos((sin(h) - sin(phi) * sin(d)) / (cos(phi) * cos(d))); }
// returns set time for the given sun altitude
function getSetJ(h, lw, phi, dec, n, M, L) {
var w = hourAngle(h, phi, dec),
a = approxTransit(w, lw, n);
return solarTransitJ(a, M, L);
}
// calculates sun times for a given date and latitude/longitude
SunCalc.getTimes = function (date, lat, lng) {
var lw = rad * -lng,
phi = rad * lat,
d = toDays(date),
n = julianCycle(d, lw),
ds = approxTransit(0, lw, n),
M = solarMeanAnomaly(ds),
L = eclipticLongitude(M),
dec = declination(L, 0),
Jnoon = solarTransitJ(ds, M, L),
i, len, time, Jset, Jrise;
var result = {
solarNoon: fromJulian(Jnoon),
nadir: fromJulian(Jnoon - 0.5)
};
for (i = 0, len = times.length; i < len; i += 1) {
time = times[i];
Jset = getSetJ(time[0] * rad, lw, phi, dec, n, M, L);
Jrise = Jnoon - (Jset - Jnoon);
result[time[1]] = fromJulian(Jrise);
result[time[2]] = fromJulian(Jset);
}
return result;
};
// export as Node module / AMD module / browser variable
if (typeof exports === 'object' && typeof module !== 'undefined') module.exports = SunCalc;
else if (typeof define === 'function' && define.amd) define(SunCalc);
else window.SunCalc = SunCalc;
}());
我一直在尝试为this question和Mozilla's documentation实施解决方案,但每当我在background.js
中加入导入行时,扩展程序都不会工作。
感谢您的帮助!
答案 0 :(得分:1)
正如wOxxOm所说,如果你想使用ES6模块化系统,你必须使用Webpack或Rollup捆绑包。 否则,您可以将这些模块重构为使用全局变量并将它们放入manifest.json:
"background": {
"scripts": ["background.js", "module1.js", "module2.js"]
}
另一种方法是创建 background.html 文件并指定所有需要的脚本(通常,通过<script>
标记)。
清单将如下:
"background": {
"page": "background.html"
}