列表中数据框的小写列名称

时间:2017-07-18 15:31:58

标签: python pandas numpy dataframe

我有多个csv,所以我使用了glob和read_csv,将每一个附加到列表中然后连接所有这些。

我的问题是如何访问列名称和小写?

编辑:

import socket 
from threading import Thread 
from socketserver import ThreadingMixIn 

# Multithreaded Python server : TCP Server Socket Thread Pool
class ClientThread(Thread): 

    def __init__(self,ip,port): 
        Thread.__init__(self) 
        self.ip = ip 
        self.port = port 
        print ("[+] New server socket thread started for " + ip + ":" + str(port)) 

    def run(self): 
        while True : 
            data = conn.recv(2048) 
            #data = "Echo data: " + data.decode()
            print ("Server received data: ", data)
            conn.send(data)  # echo 

# Multithreaded Python server : TCP Server Socket Program Stub
TCP_IP = '0.0.0.0' 
TCP_PORT = 2004 
BUFFER_SIZE = 1024  # Usually 1024, but we need quick response 

tcpServer = socket.socket(socket.AF_INET, socket.SOCK_STREAM) 
tcpServer.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) 
tcpServer.bind((TCP_IP, TCP_PORT)) 
threads = [] 

while True: 
    tcpServer.listen(4) 
    print ("Multithreaded Python server : Waiting for connections from TCP clients...") 
    (conn, (ip,port)) = tcpServer.accept() 
    newthread = ClientThread(ip,port) 
    newthread.start() 
    threads.append(newthread) 

for t in threads: 
    t.join() 



Server received data:  b''
Server received data:  b''
Server received data:  b''
Server received data:  b''
Server received data:  b''
Server received data:  b''
Server received data:  b''
Server received data:  b''
Server received data:  b''
Server received data:  b''
Server received data:  b''
Server received data:  b''
Server received data:  b''
Server received data:  b''
Server received data:  b''
Server received data:  b''
Server received data:  b''
Server received data:  b''
Server received data:  b''
Server received data:  b''
Server received data:  b''
Server received data:  b''
Server received data:  b''
Server received data:  b''
Server received da

谢谢!

2 个答案:

答案 0 :(得分:3)

我认为你需要str.lower

df.columns = df.columns.str.lower()
allfiles = glob.glob("*.csv", )
dataframes = []
for file in allfiles :
    df = pd.read_csv(file, sep=";", decimal=",")
    df.columns = df.columns.str.lower()
    dataframes.append(df)
df = pd.concat(dataframes)

答案 1 :(得分:1)

要重命名列,您可以使用rename() method of DataFrames

以下是一个例子:

df.rename(columns={colname:colname.lower() for colname in df.axes[1]})

这使用列名称列表(df.axes[1])来创建dict旧的列名称映射到新的低级版本。然后rename()方法返回带有重命名列的数据框的副本。

请注意,如果您希望编辑数据框而不是返回副本,rename()会有inplace标记。