Python - 从数据帧中提取信息(JSON)

时间:2017-07-18 12:33:16

标签: python json api dataframe incapsula

我是一个乞丐,很长一段时间我都没有编码:-)我正在使用请求库从Incapsula(云网络安全服务)API中检索JSON数据,以获取有关网站的一些统计信息。我最终想要的是将“trafic,timestamp和number的类型”写入文件以创建报告。 API响应是这样的:

{
    "res": 0,
    "res_message": "OK",
    "visits_timeseries" : [
        {
            "id":"api.stats.visits_timeseries.human",
            "name":"Human visits",
            "data":[
                [1344247200000,50],
                [1344247500000,40],
                ...
            ]
        },
        {
            "id":"api.stats.visits_timeseries.bot",
            "name":"Bot visits",
            "data":[
                [1344247200000,10],
                [1344247500000,20],
                ...
            ]
        }

我正在恢复这样的Visit_timeseries数据:

r = requests.post('https://my.incapsula.com/api/stats/v1', params=payload)
reply=r.json()
reply = reply['visits_timeseries']
reply = pandas.DataFrame(reply)

我以该表格恢复数据(在unix时间,访问次数中的日期):

print(reply[['name', 'data']].head())

name                                               data
0  Human visits  [[1500163200000, 39], [1499904000000, 73], [14...
1    Bot visits  [[1500163200000, 1891], [1499904000000, 1926],...

我不知道如何从数据框中提取我想要的字段,只将它们写入excel。我需要将数据字段修改为两行(日期,值)。并且只有名称作为顶行。

最棒的是:

        Human Visit      Bot Visit
Date       Value           Value
Date       Value           Value
Date       Value           Value

感谢您的帮助!

1 个答案:

答案 0 :(得分:1)

好吧,如果有任何帮助,这是一个硬编码版本:

import pandas as pd

reply =  {
    "res": 0,
    "res_message": "OK",
    "visits_timeseries" : [
        {
            "id":"api.stats.visits_timeseries.human",
            "name":"Human visits",
            "data":[
                [1344247200000,50],
                [1344247500000,40]
            ]
        },
        {
            "id":"api.stats.visits_timeseries.bot",
            "name":"Bot visits",
            "data":[
                [1344247200000,10],
                [1344247500000,20]
            ]
        }
        ]
        }

human_data = reply['visits_timeseries'][0]['data']
bot_data = reply['visits_timeseries'][1]['data']

df_h = pd.DataFrame(human_data, columns=['Date', 'Human Visit'])
df_b = pd.DataFrame(bot_data, columns=['Date', 'Bot Visit'])
df = df_h.append(df_b, ignore_index=True).fillna(0)
df = df.groupby('Date').sum()