我有一个训练有素的分类器 一直正常工作。
我尝试修改它以使用循环处理多个.csv文件,但是这已经打破了它,原来的代码(工作正常)现在返回与之前的.csv文件相同的错误处理没有任何问题。
我很困惑,无法看到什么会突然导致这个错误出现,因为之前一切正常。原始(工作)代码是;
# -*- coding: utf-8 -*-
import csv
import pandas
import numpy as np
import sklearn.ensemble as ske
import re
import os
import collections
import pickle
from sklearn.externals import joblib
from sklearn import model_selection, tree, linear_model, svm
# Load dataset
url = 'test_6_During_100.csv'
dataset = pandas.read_csv(url)
dataset.set_index('Name', inplace = True)
##dataset = dataset[['ProcessorAffinity','ProductVersion','Handle','Company',
## 'UserProcessorTime','Path','Product','Description',]]
# Open file to output everything to
new_url = re.sub('\.csv$', '', url)
f = open(new_url + " output report", 'w')
f.write(new_url + " output report\n")
f.write("\n")
# shape
print(dataset.shape)
print("\n")
f.write("Dataset shape " + str(dataset.shape) + "\n")
f.write("\n")
clf = joblib.load(os.path.join(
os.path.dirname(os.path.realpath(__file__)),
'classifier/classifier.pkl'))
Class_0 = []
Class_1 = []
prob = []
for index, row in dataset.iterrows():
res = clf.predict([row])
if res == 0:
if index in malware:
Class_0.append(index)
elif index in Class_1:
Class_1.append(index)
else:
print "Is ", index, " recognised?"
designation = raw_input()
if designation == "No":
Class_0.append(index)
else:
Class_1.append(index)
dataset['Type'] = 1
dataset.loc[dataset.index.str.contains('|'.join(Class_0)), 'Type'] = 0
print "\n"
results = []
results.append(collections.OrderedDict.fromkeys(dataset.index[dataset['Type'] == 0]))
print (results)
X = dataset.drop(['Type'], axis=1).values
Y = dataset['Type'].values
clf.set_params(n_estimators = len(clf.estimators_) + 40, warm_start = True)
clf.fit(X, Y)
joblib.dump(clf, 'classifier/classifier.pkl')
output = collections.Counter(Class_0)
print "Class_0; \n"
f.write ("Class_0; \n")
for key, value in output.items():
f.write(str(key) + " ; " + str(value) + "\n")
print(str(key) + " ; " + str(value))
print "\n"
f.write ("\n")
output_1 = collections.Counter(Class_1)
print "Class_1; \n"
f.write ("Class_1; \n")
for key, value in output_1.items():
f.write(str(key) + " ; " + str(value) + "\n")
print(str(key) + " ; " + str(value))
print "\n"
f.close()
我的新代码是相同的,但包含在几个嵌套循环中,以保持脚本运行,同时有文件要在文件夹内处理,新代码(导致错误的代码)在下面;
# -*- coding: utf-8 -*-
import csv
import pandas
import numpy as np
import sklearn.ensemble as ske
import re
import os
import time
import collections
import pickle
from sklearn.externals import joblib
from sklearn import model_selection, tree, linear_model, svm
# Our arrays which we'll store our process details in and then later print out data for
Class_0 = []
Class_1 = []
prob = []
results = []
# Open file to output our report too
timestr = time.strftime("%Y%m%d%H%M%S")
f = open(timestr + " output report.txt", 'w')
f.write(timestr + " output report\n")
f.write("\n")
count = len(os.listdir('.'))
while (count > 0):
# Load dataset
for filename in os.listdir('.'):
if filename.endswith('.csv') and filename.startswith("processes_"):
url = filename
dataset = pandas.read_csv(url)
dataset.set_index('Name', inplace = True)
clf = joblib.load(os.path.join(
os.path.dirname(os.path.realpath(__file__)),
'classifier/classifier.pkl'))
for index, row in dataset.iterrows():
res = clf.predict([row])
if res == 0:
if index in Class_0:
Class_0.append(index)
elif index in Class_1:
Class_1.append(index)
else:
print "Is ", index, " recognised?"
designation = raw_input()
if designation == "No":
Class_0.append(index)
else:
Class_1.append(index)
dataset['Type'] = 1
dataset.loc[dataset.index.str.contains('|'.join(Class_0)), 'Type'] = 0
print "\n"
results.append(collections.OrderedDict.fromkeys(dataset.index[dataset['Type'] == 0]))
print (results)
X = dataset.drop(['Type'], axis=1).values
Y = dataset['Type'].values
clf.set_params(n_estimators = len(clf.estimators_) + 40, warm_start = True)
clf.fit(X, Y)
joblib.dump(clf, 'classifier/classifier.pkl')
os.remove(filename)
output = collections.Counter(Class_0)
print "Class_0; \n"
f.write ("Class_0; \n")
for key, value in output.items():
f.write(str(key) + " ; " + str(value) + "\n")
print(str(key) + " ; " + str(value))
print "\n"
f.write ("\n")
output_1 = collections.Counter(Class_1)
print "Class_1; \n"
f.write ("Class_1; \n")
for key, value in output_1.items():
f.write(str(key) + " ; " + str(value) + "\n")
print(str(key) + " ; " + str(value))
print "\n"
f.close()
错误(IndexError: index 1 is out of bounds for size 1
)引用了预测行res = clf.predict([row])
。据我所知,问题在于没有足够的"类"或数据的标签类型(我是二进制分类器)?但我一直在使用这个确切的方法(在嵌套循环之外)没有任何问题。
https://codeshare.io/Gkpb44 - 包含上述.csv文件的.csv数据的代码共享链接。
答案 0 :(得分:0)
问题是[row]
是一个长度为1的数组。您的程序尝试访问索引1,该索引不存在(索引以0开头)。看起来您可能想要res = clf.predict(row)
或者再看一下行变量。希望这会有所帮助。
答案 1 :(得分:0)
所以我意识到问题是什么。
我已经创建了一个加载分类器的格式,然后使用warm_start我重新调整数据以更新分类器以尝试模拟增量/在线学习。当我处理其中包含两种类型的数据时,这很有效。但是,如果数据只是正数,那么当我重新拟合分类器时,它就会破坏它。
目前我已注释掉以下内容;
clf.set_params(n_estimators = len(clf.estimators_) + 40, warm_start = True)
clf.fit(X, Y)
joblib.dump(clf, 'classifier/classifier.pkl')
解决了这个问题。继续前进我可能会添加(还有另一个!)条件语句,看看我是否应该重新拟合数据。
我很想删除这个问题,但是由于我在搜索过程中没有发现任何涉及这个事实的内容,我认为如果有人发现他们有同样的问题我会留下答案。