我有一个二叉搜索树。我想从中删除一个节点:
void deleteANode(struct node *head, int value) {
//let us find the node
struct node *temp = head;
struct node *parent = NULL;
//let us find the node
while (temp != NULL) {
if (value > temp->data) {
parent = temp;
temp = temp->right;
} else
if (value < temp->data) {
parent = temp;
temp = temp->left;
} else {
//let us check for child nodes
//
if (temp->left == NULL && temp->right == NULL) {
printf("Deleting a leaf.\n");
temp = NULL;
printf("Set temp null.\n");
free(temp);
break;
} else
if (temp->left == NULL || temp->right == NULL) {
printf("Deleting a one child.\n");
//one of the child is null
if (temp->left != NULL) {
parent->left = temp->left;
} else {
parent->right = temp->right;
}
free(temp);
} else {
printf("Deleting two child parent.\n");
//both of them are not NULL
//need to find the pre-order successor
struct node *temp2 = temp->right;
while (temp2->left != NULL) {
temp2 = temp2->left;
}
//found the successor.
temp->data = temp2->data;
free(temp);
}
break;
}
}
}
我正在尝试删除此块中的叶节点:
if (temp->left == NULL && temp->right == NULL) {
printf("Deleting a leaf.\n");
temp->data = NULL;
printf("Set temp null.\n");
free(temp);
break;
}
但上面的代码不起作用。
我打电话给上面的方法:
deleteANode(head, 3);
前序遍历在之前和之后保持相同:
5 4 3 10 7 20删除一片叶子。设置temp null。 =============== 5 4 3 10 7 20
我做错了什么。
根据@pstrjds评论更新:
if (temp->left == NULL && temp->right == NULL ) {
printf("Deleting a leaf.\n");
parent->left = NULL;
parent->right = NULL;
free(temp);
temp = NULL;
printf("Set temp null.\n");
break;
}
它对叶节点工作正常。需要为有两个孩子的节点工作。
答案 0 :(得分:1)
在正在删除叶子的代码块中,您实际上并没有释放节点,也没有将父节点更新为不再指向它。
User-Agent
您实际上可以删除行if ( temp -> left == NULL && temp -> right == NULL )
{
printf("Deleting a leaf.\n");
if (parent->left == temp)
{
parent->left = NULL;
}
else
{
parent->right = NULL;
}
free(temp);
temp = NULL;
printf("Set temp null.\n");
break;
}
并将temp = NULL
更改为返回语句。
答案 1 :(得分:0)
您的代码真的有效吗? 应该是这样的:
printf("Deleting two child parent.\n");
Node* temp2 = temp->right;
while(temp2->left != NULL)
{
parent = temp2;
temp2 = temp2->left;
}
temp->data = temp2->data;
parent->left = NULL;
delete temp2;
return;
答案 2 :(得分:0)
Java解决方案
// Java program to demonstrate delete operation in binary search tree
class BinarySearchTree
{
/* Class containing left and right child of current node and key value*/
class Node
{
int key;
Node left, right;
public Node(int item)
{
key = item;
left = right = null;
}
}
// Root of BST
Node root;
// Constructor
BinarySearchTree()
{
root = null;
}
// This method mainly calls deleteRec()
void deleteKey(int key)
{
root = deleteRec(root, key);
}
/* A recursive function to insert a new key in BST */
Node deleteRec(Node root, int key)
{ Node x=root;
Node parent =null;
/* Base Case: If the tree is empty */
while(x!=null)
{
if(x.key>key)
{ parent=x;
x=x.left;
}
else if(x.key<key)
{parent=x;
x=x.right;
}
else
{
if(x.left==null&&x.right==null)
{
System.out.println(x.key+"y1");
if(parent.left==x)
parent.left=null;
else if(parent.right==x)
parent.right=null;
x=null;
break;
}
else
{
System.out.println(x.key+"y2");
if(x.left==null)
{
if(parent.right==x)
parent.right=x.right;
else if(parent.left==x)
parent.left=x.right;
System.out.println(x.key+"yes");
x=null;
break;
}
else if(x.right==null)
{
if(parent.left==x)
parent.left=x.left;
else if(parent.right==x)
parent.right=x.left;
x=null;
break;
}
else
{
Node temp=x;
Node px=null;
temp=temp.right;
while(temp.left!=null)
{ px=temp;
temp=temp.left;
}
x.key=temp.key;
if(px.left==temp)
px.left=null;
else if(px.left==temp)
px.right=null;
temp=null;
break;
}
}
}
}
return root;
}
int minValue(Node root)
{
int minv = root.key;
while (root.left != null)
{
minv = root.left.key;
root = root.left;
}
return minv;
}
// This method mainly calls insertRec()
void insert(int key)
{
root = insertRec(root, key);
}
/* A recursive function to insert a new key in BST */
Node insertRec(Node root, int key)
{
/* If the tree is empty, return a new node */
if (root == null)
{
root = new Node(key);
return root;
}
/* Otherwise, recur down the tree */
if (key < root.key)
root.left = insertRec(root.left, key);
else if (key > root.key)
root.right = insertRec(root.right, key);
/* return the (unchanged) node pointer */
return root;
}
// This method mainly calls InorderRec()
void inorder()
{
inorderRec(root);
}
// A utility function to do inorder traversal of BST
void inorderRec(Node root)
{
if (root != null)
{
inorderRec(root.left);
System.out.print(root.key + " ");
inorderRec(root.right);
}
}
// Driver Program to test above functions
public static void main(String[] args)
{
BinarySearchTree tree = new BinarySearchTree();
/* Let us create following BST
50
/ \
30 70
/ \ / \
20 40 60 80 */
tree.insert(50);
tree.insert(30);
tree.insert(20);
tree.insert(40);
tree.insert(70);
tree.insert(60);
tree.insert(80);
System.out.println("Inorder traversal of the given tree");
tree.inorder();
System.out.println("\nDelete 20");
tree.deleteKey(20);
System.out.println("Inorder traversal of the modified tree");
tree.inorder();
System.out.println("\nDelete 30");
tree.deleteKey(30);
System.out.println("Inorder traversal of the modified tree");
tree.inorder();
System.out.println("\nDelete 50");
tree.deleteKey(50);
System.out.println("Inorder traversal of the modified tree");
tree.inorder();
}
}