这两个代码,一个用Python 3编写,另一个用Wolfram Mathematica编写。代码是等价的,因此结果(图)应该相同。但是代码给出了不同的情节。这是代码。
Python代码:
import numpy as np
import matplotlib.pyplot as plt
from scipy.special import k0, k1, i0, i1
k=100.0
x = 0.0103406
B = 80.0
def fdens(f):
return (1/2*(1-f**2)**2+f **4/2
+1/2*B*k*x**2*f**2*(1-f**2)*np.log(1+2/(B*k*x**2))
+(B*f**2*(1+B*k*x**2))/((k*(2+B*k*x**2))**2)
-f**4/(2+B*k*x**2)
+(B*f)/(k*x)*
(k0(f*x)*i1(f *np.sqrt(2/(k*B)+x**2))
+i0(f*x)*k1(f *np.sqrt(2/(k*B)+x**2)))/
(k1(f*x)*i1(f *np.sqrt(2/(k*B)+x**2))
-i1(f*x)*k1(f *np.sqrt(2/(k*B)+x**2)))
)
plt.figure(figsize=(10, 8), dpi=70)
X = np.linspace(0, 1, 100, endpoint=True)
C = fdens(X)
plt.plot(X, C, color="blue", linewidth=2.0, linestyle="-")
plt.show()
Mathematica代码:
k=100.;B=80.;
x=0.0103406;
func[f_]:=1/2*(1-f^2)^2+1/2*B*k*x^2*f^2*(1-f^2)*Log[1+2/(B*k*x^2)]+f^4/2-f^4/(2+B*k*x^2)+B*f^2*(1+B*k*x^2)/(k*(2+B*k*x^2)^2)+(B*f)/(k*x)*(BesselI[1, (f*Sqrt[2/(B*k) + x^2])]*BesselK[0, f*x] + BesselI[0, f*x]*BesselK[1, (f*Sqrt[2/(B*k) + x^2])])/(BesselI[1, (f*Sqrt[2/(B*k) + x^2])]*BesselK[1,f*x] - BesselI[1,f*x]*BesselK[1, (f*Sqrt[2/(B*k) + x^2])]);
Plot[func[f],{f,0,1}]
the Mathematica result (纠正一个)
结果不同。有人知道为什么吗?
答案 0 :(得分:1)
从我的测试看起来,第一个订单Bessell函数给出了不同的结果。两者最初都评估为贝塞尔(f * 0.0188925),但scipy版本给出了0到9.4e-3的范围,其中wolframalpha(使用Mathematica后端)给出0到1.4。我会深入研究一下这个。
此外,python使用标准C浮点数,而Mathematica使用符号运算。 Sympy尝试在python中模仿这种符号操作。