Rsparkling内存问题

时间:2017-07-13 17:15:09

标签: r apache-spark h2o sparklyr

当我尝试使用rsparkling随机森林函数在我的数据集(5888字节)上拟合随机森林模型时,我的内存不足了:

 h2o.randomForest(x = x, 
                  y = y,
                  training_frame = trainDatasetTopTen_tbl,
                  nfolds = 5).

我的配置设置:

config <- spark_config()
config$spark.driver.cores <- 3 
config$spark.driver.memory <- "3.4G" 
config$spark.driver.extraJavaOptions <- "append -XX:MaxPermSize= 3.8G"

sc <- spark_connect(master = 'local', config = config,
                version = '2.1.0')

我的机器中可用的内存为4 GB。

H2O群集信息是:

R is connected to the H2O cluster: 
H2O cluster uptime:         30 minutes 376 milliseconds 
H2O cluster version:        3.10.5.2 
H2O cluster version age:    24 days  
H2O cluster name:           sparkling-water-mubarak_local-1499963226139 
H2O cluster total nodes:    1 
H2O cluster total memory:   0.7 GB 
H2O cluster total cores:    4 
H2O cluster allowed cores:  4 
H2O cluster healthy:        TRUE 
H2O Connection ip:          127.0.0.1 
H2O Connection port:        54321 
H2O Connection proxy:       NA 
H2O Internal Security:      FALSE 
R Version:                  R version 3.4.0 (2017-04-21) 
  • H2O启动了Java的日志信息(在http://localhost:4040/sparkling-water/下):

    线程信息:Java堆totalMemory:461.0 MB Java堆maxMemory:910.5 MB thread INFO:Java版本:Java 1.8.0_65(来自Oracle Corporation) 线程INFO:JVM启动参数:[ - Xmx1g]

因此我的问题是:如何将JVM参数从1GB增加到3 GB?

我的devtools信息是:

Session info --------------------------------------
setting  value                       
version  R version 3.4.0 (2017-04-21)
system   x86_64, darwin15.6.0        
ui       RStudio (1.0.143)           
language (EN)                        
collate  en_GB.UTF-8                 
tz       Europe/London               
date     2017-07-13`  

package      * version    date      
base            * 3.4.0      2017-04-21
caret          * 6.0-76     2017-04-18
datasets     * 3.4.0      2017-04-21
dplyr         * 0.7.1      2017-06-22
ggplot2       * 2.2.1      2016-12-30
graphics      * 3.4.0      2017-04-21
grDevices    * 3.4.0      2017-04-21
h2o            * 3.10.5.2   2017-07-01
lattice      * 0.20-35    2017-03-25
methods      * 3.4.0      2017-04-21
rsparkling   * 0.2.1      2017-06-30
sparklyr     * 0.5.6-9011 2017-07-05
stats        * 3.4.0      2017-04-21
utils        * 3.4.0      2017-04-21`

谢谢你, MJ

0 个答案:

没有答案