尝试使用TensorForestEstimator训练Tensorflow随机森林时出现TypeError。
TypeError: Input 'input_data' of 'CountExtremelyRandomStats' Op has type float64 that does not match expected type of float32.
我尝试过使用Python 2.7和Python 3,我尝试使用tf.cast()将所有内容放在float32中,但它没有帮助。我已经检查了执行时的数据类型和它的float32。这个问题似乎不是我提供的数据(所有花车的csv),所以我不知道从哪里开始。
我可以尝试任何有关我可以尝试的事情的建议。
代码:
# Build an estimator.
def build_estimator(model_dir):
params = tensor_forest.ForestHParams(
num_classes=2, num_features=760,
num_trees=FLAGS.num_trees, max_nodes=FLAGS.max_nodes)
graph_builder_class = tensor_forest.RandomForestGraphs
if FLAGS.use_training_loss:
graph_builder_class = tensor_forest.TrainingLossForest
# Use the SKCompat wrapper, which gives us a convenient way to split in-memory data into batches.
return estimator.SKCompat(random_forest.TensorForestEstimator(params, graph_builder_class=graph_builder_class, model_dir=model_dir))
# Train and evaluate the model.
def train_and_eval():
# load datasets
training_set = pd.read_csv('/Users/carl/Dropbox/Docs/Python/randomforest_balanced_train.csv', dtype=np.float32, header=None)
test_set = pd.read_csv('/Users/carl/Dropbox/Docs/Python/randomforest_balanced_test.csv', dtype=np.float32, header=None)
print('###########')
print(training_set.loc[:,1].dtype) # this prints float32
# load labels
training_labels = pd.read_csv('/Users/carl/Dropbox/Docs/Python/randomforest_balanced_train_class.csv', dtype=np.int32, names=LABEL, header=None)
test_labels = pd.read_csv('/Users/carl/Dropbox/Docs/Python/randomforest_balanced_test_class.csv', dtype=np.int32, names=LABEL, header=None)
# define the path where the model will be stored - default is current directory
model_dir = tempfile.mkdtemp() if not FLAGS.model_dir else FLAGS.model_dir
print('model directory = %s' % model_dir)
# build the random forest estimator
est = build_estimator(model_dir)
tf.cast(training_set, tf.float32) #error occurs with/without casts
tf.cast(test_set, tf.float32)
# train the forest to fit the training data
est.fit(x=training_set, y=training_labels) #this line throws the error
答案 0 :(得分:0)
您使用tf.cast的方式不正确
tf.cast(training_set, tf.float32) #error occurs with/without casts
应该是
training_set = tf.cast(training_set, tf.float32)
tf.cast是非就地方法,它是一个张量流op,与任何其他操作一样,需要分配和运行。