使用TensorForestEstimator训练Tensorflow随机森林时的TypeError

时间:2017-07-13 15:46:25

标签: python python-3.x machine-learning tensorflow random-forest

尝试使用TensorForestEstimator训练Tensorflow随机森林时出现TypeError。

TypeError: Input 'input_data' of 'CountExtremelyRandomStats' Op has type float64 that does not match expected type of float32.

我尝试过使用Python 2.7和Python 3,我尝试使用tf.cast()将所有内容放在float32中,但它没有帮助。我已经检查了执行时的数据类型和它的float32。这个问题似乎不是我提供的数据(所有花车的csv),所以我不知道从哪里开始。

我可以尝试任何有关我可以尝试的事情的建议。

代码:

# Build an estimator.
def build_estimator(model_dir):
  params = tensor_forest.ForestHParams(
      num_classes=2, num_features=760,
      num_trees=FLAGS.num_trees, max_nodes=FLAGS.max_nodes)
  graph_builder_class = tensor_forest.RandomForestGraphs
  if FLAGS.use_training_loss:
    graph_builder_class = tensor_forest.TrainingLossForest
  # Use the SKCompat wrapper, which gives us a convenient way to split in-memory data into batches.
  return estimator.SKCompat(random_forest.TensorForestEstimator(params, graph_builder_class=graph_builder_class, model_dir=model_dir))


# Train and evaluate the model.
def train_and_eval():

  # load datasets
  training_set = pd.read_csv('/Users/carl/Dropbox/Docs/Python/randomforest_balanced_train.csv', dtype=np.float32, header=None)
  test_set = pd.read_csv('/Users/carl/Dropbox/Docs/Python/randomforest_balanced_test.csv', dtype=np.float32, header=None)

  print('###########')
  print(training_set.loc[:,1].dtype)  # this prints float32

  # load labels
  training_labels = pd.read_csv('/Users/carl/Dropbox/Docs/Python/randomforest_balanced_train_class.csv', dtype=np.int32, names=LABEL, header=None)
  test_labels = pd.read_csv('/Users/carl/Dropbox/Docs/Python/randomforest_balanced_test_class.csv', dtype=np.int32, names=LABEL, header=None)

  # define the path where the model will be stored - default is current directory
  model_dir = tempfile.mkdtemp() if not FLAGS.model_dir else FLAGS.model_dir
  print('model directory = %s' % model_dir)

  # build the random forest estimator
  est = build_estimator(model_dir)

  tf.cast(training_set, tf.float32) #error occurs with/without casts
  tf.cast(test_set, tf.float32)
  # train the forest to fit the training data
  est.fit(x=training_set, y=training_labels)  #this line throws the error

1 个答案:

答案 0 :(得分:0)

您使用tf.cast的方式不正确

tf.cast(training_set, tf.float32) #error occurs with/without casts

应该是

training_set = tf.cast(training_set, tf.float32)

tf.cast是就地方法,它是一个张量流op,与任何其他操作一样,需要分配和运行。