适用于Android的TensorFlow C ++示例

时间:2017-07-12 20:18:32

标签: android c++ tensorflow

我正在研究Android设备的TensorFlow git存储库中提供的示例。它使用Java接口作为C ++ API的包装器。有没有例子我可以直接使用C ++ API来初始化TensorFlow,加载模型和推理等等?

2 个答案:

答案 0 :(得分:0)

签出this repofollowing blog寻找解决方案。这些链接将提供有关如何在Android上使用Tensorflow c ++ API的逐步说明。这个想法是创建一个对Android友好的动态库(.so文件)(即不包括Tensorflow元素,这些元素仅与Desktop \ gpu兼容)。

答案 1 :(得分:0)

我为Raspberry PI编写了此代码,但我认为对于Android,它必须几乎相同:

tfbenchmark.h:

#ifndef TENSORFLOW_H
#define TENSORFLOW_H

#include "tensorflow/core/platform/types.h"
#include "tensorflow/core/public/session.h"

class TensorFlowBenchmark
{
  public:
    TensorFlowBenchmark();
    virtual ~TensorFlowBenchmark();

    bool init();
    bool run();

  private:
    std::unique_ptr<tensorflow::Session> session_;
};


#endif /* TENSORFLOW_H */

tfbenchmark.cpp:

#include "tfbenchmark.h"

#include <vector>
#include <fstream>
#include <chrono>
#include <ctime>
#include <cstddef>
#include <jpeglib.h>
#include <setjmp.h>

#include "tensorflow/core/framework/graph.pb.h"
#include "tensorflow/core/framework/tensor.h"
#include "tensorflow/core/graph/default_device.h"
#include "tensorflow/core/graph/graph_def_builder.h"
#include "tensorflow/core/lib/core/errors.h"
#include "tensorflow/core/lib/core/stringpiece.h"
#include "tensorflow/core/lib/core/threadpool.h"
#include "tensorflow/core/lib/io/path.h"
#include "tensorflow/core/lib/strings/stringprintf.h"
#include "tensorflow/core/platform/init_main.h"
#include "tensorflow/core/platform/logging.h"
#include "tensorflow/core/platform/types.h"
#include "tensorflow/core/public/session.h"
#include "tensorflow/core/util/command_line_flags.h"

// These are all common classes it's handy to reference with no namespace.
using tensorflow::Flag;
using tensorflow::Tensor;
using tensorflow::TensorShape;
using tensorflow::Status;
using tensorflow::string;
using tensorflow::int32;

const static string root_dir = ".";
const static string image = "../input.jpg";
const static string graph = "models/frozen_graph.pb";
const static int32 input_width = 224;
const static int32 input_height = 224;
const static int32 input_mean = 128;
const static int32 input_std = 128;
const static string input_layer = "x_input_pl";
const static string output_layer = "out/out";

const static int NUM_EVAL = 100;
const static int MAX_BATCH = 256;

template<class T>
void report_metrics(const std::vector<T>& v, int batch_size) {
  double sum = std::accumulate(v.begin(), v.end(), 0.0);
  double mean = sum / v.size();

  LOG(INFO) << "Batch size = " << batch_size << ": "
        << mean/batch_size << "ms per image";
}

// Error handling for JPEG decoding.
void CatchError(j_common_ptr cinfo) {
    (*cinfo->err->output_message)(cinfo);
    jmp_buf* jpeg_jmpbuf = reinterpret_cast<jmp_buf*>(cinfo->client_data);
    jpeg_destroy(cinfo);
    longjmp(*jpeg_jmpbuf, 1);
}

// Decompresses a JPEG file from disk.
Status LoadJpegFile(string file_name, std::vector<tensorflow::uint8>* data,
                    int* width, int* height, int* channels) {
    struct jpeg_decompress_struct cinfo;
    FILE* infile;
    JSAMPARRAY buffer;
    int row_stride;

    if ((infile = fopen(file_name.c_str(), "rb")) == NULL) {
        LOG(ERROR) << "Can't open " << file_name;
        return tensorflow::errors::NotFound("JPEG file ", file_name,
                                            " not found");
    }

    struct jpeg_error_mgr jerr;
    jmp_buf jpeg_jmpbuf;  // recovery point in case of error
    cinfo.err = jpeg_std_error(&jerr);
    cinfo.client_data = &jpeg_jmpbuf;
    jerr.error_exit = CatchError;
    if (setjmp(jpeg_jmpbuf)) {
        return tensorflow::errors::Unknown("JPEG decoding failed");
    }
    jpeg_create_decompress(&cinfo);
    jpeg_stdio_src(&cinfo, infile);
    jpeg_read_header(&cinfo, TRUE);
    jpeg_start_decompress(&cinfo);
    *width = cinfo.output_width;
    *height = cinfo.output_height;
    *channels = cinfo.output_components;
    data->resize((*height) * (*width) * (*channels));

    row_stride = cinfo.output_width * cinfo.output_components;
    buffer = (*cinfo.mem->alloc_sarray)((j_common_ptr) & cinfo, JPOOL_IMAGE,
                                        row_stride, 1);
    while (cinfo.output_scanline < cinfo.output_height) {
        tensorflow::uint8* row_address =
            &((*data)[cinfo.output_scanline * row_stride]);
        jpeg_read_scanlines(&cinfo, buffer, 1);
        memcpy(row_address, buffer[0], row_stride);
    }

    jpeg_finish_decompress(&cinfo);
    jpeg_destroy_decompress(&cinfo);
    fclose(infile);
    return Status::OK();
}

// Given an image file name, read in the data, try to decode it as an image,
// resize it to the requested size, and then scale the values as desired.
Status FillTensorFromImageData(std::vector<tensorflow::uint8>& image_data,
                               const int batch_size, const int image_height,
                               const int image_width, const int image_channels,
                               std::vector<Tensor>* out_tensors) {

    // In these loops, we convert the eight-bit data in the image into float,
    // resize
    // it using bilinear filtering, and scale it numerically to the float range
    // that
    // the model expects (given by input_mean and input_std).
    tensorflow::Tensor image_tensor(
        tensorflow::DT_FLOAT,
        tensorflow::TensorShape(
            {batch_size, image_height, image_width, image_channels}));
    auto image_tensor_mapped = image_tensor.tensor<float, 4>();
    LOG(INFO) << image_data.size() << "bytes in image_data";
    tensorflow::uint8* in = image_data.data();
    float* out = image_tensor_mapped.data();
    for(int n = 0; n < batch_size; n++) {
      for (int y = 0; y < image_height; ++y) {
        tensorflow::uint8* in_row = in + (y * image_width * image_channels);
        float* out_row = out + (n * image_height * image_width * image_channels) + (y * image_width * image_channels);
        for (int x = 0; x < image_width; ++x) {
            tensorflow::uint8* input_pixel = in_row + (x * image_channels);
            float* out_pixel = out_row + (x * image_channels);
            for (int c = 0; c < image_channels; ++c) {
                out_pixel[c] =
                    static_cast<float>(input_pixel[c] - input_mean) / input_std;
            }
        }
      }
    }
    out_tensors->push_back(image_tensor);
    return Status::OK();
}

// Reads a model graph definition from disk, and creates a session object you
// can use to run it.
Status LoadGraph(string graph_file_name,
                 std::unique_ptr<tensorflow::Session>* session) {
    tensorflow::GraphDef graph_def;
    Status load_graph_status = ReadBinaryProto(tensorflow::Env::Default(),
                                               graph_file_name, &graph_def);
    if (!load_graph_status.ok()) {
        return tensorflow::errors::NotFound("Failed to load compute graph at '",
                                            graph_file_name, "'");
    }
    session->reset(tensorflow::NewSession(tensorflow::SessionOptions()));
    Status session_create_status = (*session)->Create(graph_def);
    if (!session_create_status.ok()) {
        return session_create_status;
    }
    return Status::OK();
}

TensorFlowBenchmark::TensorFlowBenchmark() {}
TensorFlowBenchmark::~TensorFlowBenchmark() {}

bool TensorFlowBenchmark::init() {
    // We need to call this to set up global state for TensorFlow.
    int argc;
    char** argv;
    tensorflow::port::InitMain("benchmark", &argc, &argv);

    string graph_path = tensorflow::io::JoinPath(root_dir, graph);
    Status load_graph_status = LoadGraph(graph_path, &session_);
    if (!load_graph_status.ok()) {
        LOG(ERROR) << load_graph_status;
        return false;
    }

    return true;
}

bool TensorFlowBenchmark::run() {

    string image_path = tensorflow::io::JoinPath(root_dir, image);
    std::vector<tensorflow::uint8> image_data;
    int image_width;
    int image_height;
    int image_channels;
    Status load_img_status = LoadJpegFile(image_path, &image_data, &image_width, &image_height,
                                          &image_channels);
    if(!load_img_status.ok()) {
        LOG(ERROR) << load_img_status;
        return false;
    }

    LOG(INFO) << "Loaded JPEG: " << image_width << "x" << image_height << "x"
              << image_channels;


    for(int batch_size = 1; batch_size <= MAX_BATCH; batch_size <<= 1) {
      LOG(INFO) << "Batch size " << batch_size;

      std::vector<Tensor> resized_tensors;
      Status read_tensor_status =
        FillTensorFromImageData(image_data, batch_size, image_height, image_width,
                                image_channels, &resized_tensors);
      if (!read_tensor_status.ok()) {
        LOG(ERROR) << read_tensor_status;
        return false;
      }
      const Tensor& resized_tensor = resized_tensors[0];

      // Actually run the image through the model.
      std::vector<Tensor> outputs;
      std::vector<long> timings;
      for (int i = 0; i < NUM_EVAL; ++i) {
        auto start = std::chrono::system_clock::now();

        Status run_status = session_->Run({{input_layer, resized_tensor}},
                                          {output_layer}, {}, &outputs);

        auto end = std::chrono::system_clock::now();
    timings.push_back( std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count());
        if (!run_status.ok()) {
            LOG(ERROR) << "Running model failed: " << run_status;
            return false;
        }
      }
      report_metrics(timings, batch_size);
    }
    return true;
}