与srand()的rand()给出了奇怪的相似结果。 rand()的返回非常相似

时间:2017-07-12 19:41:45

标签: c++ random srand

这是一个看似常见的问题,所以我希望我听起来并不多余。但是从rand()返回的范围应该在0和RAND_MAX之间,但是,当我做一个非常简单的rand语句时,我总是在很小的范围内得到回报。

此范围类似于1,4XX,XXX,XXX。我认为这可能是一个时钟的东西,所以我等了三十分钟,我仍然得到相同范围内的数字。

以下是20分钟前的一些示例输出:

Matthews-Macbook-Pro:Data_Structures matthewwright$ ./main
1439810968
80
Matthews-Macbook-Pro:Data_Structures matthewwright$ ./main
1439827775
29
Matthews-Macbook-Pro:Data_Structures matthewwright$ ./main
1439827775
29
Matthews-Macbook-Pro:Data_Structures matthewwright$ ./main
1439844582
78
Matthews-Macbook-Pro:Data_Structures matthewwright$ ./main
1439878196
29
Matthews-Macbook-Pro:Data_Structures matthewwright$ ./main
1439895003
78

以下是刚才的示例输出:

Matthews-Macbook-Pro:Data_Structures matthewwright$ ./main
1456483512
78
Matthews-Macbook-Pro:Data_Structures matthewwright$ ./main
1456500319
80
Matthews-Macbook-Pro:Data_Structures matthewwright$ ./main
1456500319
80
Matthews-Macbook-Pro:Data_Structures matthewwright$ ./main
1456517126
29
Matthews-Macbook-Pro:Data_Structures matthewwright$ ./main
1456533933
78

我知道rand()并不完美,但这似乎太过相似而不正确。如果范围是0 - RAND_MAX,那么返回的每个数字都在相同的范围内似乎很奇怪。

以下是我测试的代码:

#include <iostream>
#include <stdio.h>      /* printf, scanf, puts, NULL */
#include <stdlib.h>     /* srand, rand */
#include <time.h>       /* time */

int main(int argc, char const *argv[])
{
    /* declarations */
    srand(time(NULL));

    std::cout << std::rand() << std::endl;
    std::cout << std::rand()%100 << std::endl;
    return 0;
}

我认为我不需要所有这些#include语句,但是我看到其他人使用它们,所以我将它们包括在内以防万一它会影响我的输出,但事实并非如此。

修改

所以@Mgetz和@Curious提供的链接非常有帮助。巩固,

信息页面:http://en.cppreference.com/w/cpp/numeric/random/uniform_int_distribution

超级有用的讲座(真实的,请看这个):https://channel9.msdn.com/Events/GoingNative/2013/rand-Considered-Harmful

我总结了我在演讲中听到的关于我自己的笔记的内容,所以如果我忘记的话,我不会再重新研究这个。我没有在这里编写代码,大部分代码都在上面链接的“信息页面”中。大多数评论都包含来自讲座的信息,尽管它不是从讲座中逐字逐句。再次,我真的建议观看。它密集,信息良好。

#include <iostream>
#include <random>

int main(int argc, char const *argv[])
{
    /* https://channel9.msdn.com/Events/GoingNative/2013/rand-Considered-Harmful */

    /* Randomness Verson 1 : Deterministic */
    std::mt19937 mt(1234);
    std::uniform_int_distribution<int> dist(0,127);
    /* Default is int, but we could specify others.
     * The range is [inclusive, inclusive]
     * 
     * Above is Mersenne Twister RNG. It is deterministic, meaning we can get the same result
     * if we use "std::mt19937 mt(1234)"; or something like that. This could be useful for some
     * people (He mentions games, some experiments, et cetera). It is stupid fast.
     * 
     * However, it isn't cryptographically secure, but it pretty random as random goes. If you
     * track the output though, you could guess the next numbers, so don't use it for anything
     * secure.
     */

    /* Randomness Verson 2 */
    std::random_device rd;  //Will be used to obtain a seed for the random number engine
    std::mt19937 gen(rd()); //Standard mersenne_twister_engine seeded with rd()
    std::uniform_int_distribution<int> dis(0, 127); // Inclusive
    /* This is not reproducible. This is not deterministic.
     * "Possibly Crypto-secure." Seems like using Random Device makes this near perfect random,
     * assuming some conditions. I'm not a man who's written security software, and if you are 
     * writing security software, I assume you're not looking at StackOverflow to figure out how
     * to do random numbers. The way he talked about it in the lecture made this seem much more 
     * secure, but I'm not sure what I'm talking about when it comes to these things
     */

    for (int i = 0; i < 3; ++i)
    {
        /* Below would output the pure Mersenne Twister output, deterministic. This seems to
         * be pretty random, but it isn't totally random. */
        std::cout << dist(mt) << " ";

        /* And below would output the random device output. This should be slower, but
         * more truly random. */

        //Use dis to transform the random unsigned int generated by gen into an int in [1, 6]
        std::cout << dis(gen) << " ";

        std::cout<< std::endl;
    }
}

1 个答案:

答案 0 :(得分:5)

使用模数运算符会在得到的“随机数”中产生一定量的偏差。此外,(?:<(?!p>|/)(?<tag>[^ >]+)(?=[ >])[^<>]*>)?\s*Description:\s*(?:<\/\k<tag>[^<>]*>)? 函数的工作是实现定义的,并不遵循跨平台的标准算法。

考虑使用更现代的C ++ 11随机数生成功能,这些功能使用标准的广泛接受的随机数生成算法,这些算法在不同平台上的工作方式相同(当然,给定相同的种子)。

请参阅cppreference page for std::uniform_int_distribution

中的以下示例
rand()

以下是Stephan Levavej的精彩演讲链接,深入探讨了这一点https://channel9.msdn.com/Events/GoingNative/2013/rand-Considered-Harmful