我使用tensorflow模型库中的object_detection。
我想用我自己的数据集训练非常具体的图像。我的图像没有特定的尺寸,而且变化很大。
我得到的错误是:
InvalidArgumentError (see above for traceback): ConcatOp : Dimensions of inputs should match: shape[0] = [1,1446,1024,3] vs. shape[1] = [1,1449,1024,3]
[[Node: concat_1 = ConcatV2[N=8, T=DT_FLOAT, Tidx=DT_INT32, _device="/job:localhost/replica:0/task:0/gpu:0"](Preprocessor/sub, Preprocessor_1/sub, Preprocessor_2/sub, Preprocessor_3/sub, Preprocessor_4/sub, Preprocessor_5/sub, Preprocessor_6/sub, Preprocessor_7/sub, concat_1/axis)]]
[[Node: MultiClassNonMaxSuppression_1/Equal/_3597 = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/cpu:0", send_device="/job:localhost/replica:0/task:0/gpu:0", send_device_incarnation=1, tensor_name="edge_17245_MultiClassNonMaxSuppression_1/Equal", tensor_type=DT_BOOL, _device="/job:localhost/replica:0/task:0/cpu:0"]()]]
完整输出可在pastebin找到。
以下是我使用的配置。
# Faster R-CNN with Resnet-50 (v1), configured for Oxford-IIT Pets Dataset.
# Users should configure the fine_tune_checkpoint field in the train config as
# well as the label_map_path and input_path fields in the train_input_reader and
# eval_input_reader. Search for "PATH_TO_BE_CONFIGURED" to find the fields that
# should be configured.
model {
faster_rcnn {
num_classes: 16
image_resizer {
keep_aspect_ratio_resizer {
min_dimension: 600
max_dimension: 1024
}
}
feature_extractor {
type: 'faster_rcnn_resnet50'
first_stage_features_stride: 16
}
first_stage_anchor_generator {
grid_anchor_generator {
scales: [0.25, 0.5, 1.0, 2.0]
aspect_ratios: [0.5, 1.0, 2.0]
height_stride: 16
width_stride: 16
}
}
first_stage_box_predictor_conv_hyperparams {
op: CONV
regularizer {
l2_regularizer {
weight: 0.0
}
}
initializer {
truncated_normal_initializer {
stddev: 0.01
}
}
}
first_stage_nms_score_threshold: 0.0
first_stage_nms_iou_threshold: 0.7
first_stage_max_proposals: 300
first_stage_localization_loss_weight: 2.0
first_stage_objectness_loss_weight: 1.0
initial_crop_size: 14
maxpool_kernel_size: 2
maxpool_stride: 2
second_stage_box_predictor {
mask_rcnn_box_predictor {
use_dropout: false
dropout_keep_probability: 1.0
fc_hyperparams {
op: FC
regularizer {
l2_regularizer {
weight: 0.0
}
}
initializer {
variance_scaling_initializer {
factor: 1.0
uniform: true
mode: FAN_AVG
}
}
}
}
}
second_stage_post_processing {
batch_non_max_suppression {
score_threshold: 0.0
iou_threshold: 0.6
max_detections_per_class: 100
max_total_detections: 300
}
score_converter: SOFTMAX
}
second_stage_localization_loss_weight: 2.0
second_stage_classification_loss_weight: 1.0
}
}
train_config: {
batch_size: 8
optimizer {
momentum_optimizer: {
learning_rate: {
manual_step_learning_rate {
initial_learning_rate: 0.0003
schedule {
step: 0
learning_rate: .0003
}
schedule {
step: 900000
learning_rate: .00003
}
schedule {
step: 1200000
learning_rate: .000003
}
}
}
momentum_optimizer_value: 0.9
}
use_moving_average: false
}
gradient_clipping_by_norm: 10.0
data_augmentation_options {
random_horizontal_flip {
}
}
}
train_input_reader: {
tf_record_input_reader {
input_path: "train.record"
}
label_map_path: "label_map.pbtxt"
}
eval_config: {
num_examples: 200
}
eval_input_reader: {
tf_record_input_reader {
input_path: "val.record"
}
label_map_path: "label_map.pbtxt"
}
问题1 : 检测api是否需要输入图像的特定尺寸?
问题2 : 我收到此错误的原因是什么?如何修复错误或我需要从哪里开始?
我已经尝试过为每张图片提供1024px和500px的宽度。
我采取的步骤:
我在Ubuntu 16.04上使用python 3.5.2和一个Nvidia GPU。
答案 0 :(得分:2)
我通过将batch_size更改为1来解决了这个问题。
问题是每张图像的张量大小不同。如果您具有相同尺寸的图像,则可以将batch_size设置得更高。由于情况并非如此,您必须将batch_size设置为1。
所以答案是只要batch_size为1,api就可以处理不同的维度。